
 

 
SADIO Electronic Journal of Informatics and 

Operations Research 
http://www.dc.uba.ar/sadio/ejs 

vol. 6, no. 1, pp. 12-20 (2004) 

 

Using Association Rules to Learn Users’ Assistance 
Requirements 

 
 

Silvia Schiaffino 1,2 Analía Amandi 1 

 
1 ISISTAN 
Facultad de Ciencias Exactas – Univ. Nac. del Centro de la Pcia. Bs. As. 
Campus Universitario – Paraje Arroyo Seco 
Tandil, 7000, Bs. As., Argentina 
{sschia,amandi}@exa.unicen.edu.ar  
 
2 Also CONICET  
 
 

Abstract 
 

Interface agents are computer programs that learn users’ preferences to provide 
them personalized assistance with their computer-based tasks. In order to 
personalize the interaction with users, interface agents must learn how to best 
interact with each user and how to provide them assistance of the right sort at the 
right time. Particularly, an interface agent has to discover when the user needs a 
suggestion to solve a problem, when he requires only a warning about it, when he 
wants the agent to execute an action and when he wants the agent to do just 
nothing. In this work we propose a learning algorithm, named WATSON, to tackle 
this problem. The WATSON algorithm enables an interface agent to adapt its 
behavior and its interaction with a user to the user’s assistance requirements. Our 
algorithm uses association rules (AR) to discover associations among problem 
situations and a user’s assistance requirements in a given application domain. 
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1 Introduction 
 
 
Providing personalized assistance to users with their computer-based tasks has been, so far, the main objective 
of interface agents. Interface agents are computer programs that have the ability to learn a user’s preferences, 
interests and priorities, and help him to deal with one or more computer applications. A commonly used 
metaphor for understanding interface agent paradigm is comparing them to a human secretary or personal 
assistant who collaborates with the user in the same work environment [10].  
 
To fulfill their main goal, the many interface agents that have been developed have focused their attention on 
learning a user’s preferences, interests and priorities in a given application domain and on assisting the user 
according to them. However, interface agent developers have paid little attention to some key issues when 
assisting a user: how to best interact with each user and how to provide them assistance of the right sort at the 
right time. 
 
As it has been pointed out in [8], there are some problems with the use of interface agents: poor guessing 
about the goals and needs of users, inadequate consideration of the costs and benefits of each agent action, 
poor timing of agent actions and inadequate attention to opportunities that allow a user to guide the invocation 
of agent services and to refine potentially sub-optimal results provided by the agent.  
 
In addition to these problems, we have identified a specific problem that has to be solved in order to 
personalize and improve the interaction between an interface agent and a user. When an interface agent 
detects a problem situation or a situation of interest for the user, it has to decide among various possible 
assistance actions: warning the user about the problem and let him decide how to deal with it; suggesting him 
how to solve the problem; solving it on the user’s behalf; or doing nothing. This decision will be mainly 
influenced by the knowledge the agent has to make a suggestion or to execute an action on the user’s behalf, 
since if it does not know what to suggest or what to do, it will merely warn the user about the problem. 
However, although the agent probably knows what to suggest, it has to learn if the user wants it to suggest 
him something or not in that particular problem situation, or if he does not even want to be warned. In order to 
take the best decision, the agent must discover when the user wants a suggestion to solve a problem, when he 
requires only a warning about it, when he wants the agent to solve the problem and when he wants the agent 
to do just nothing. 
 
Consider, for example, an interface agent that assists a user with the organization of his agenda. Suppose that 
the user is scheduling a new event that overlaps with another event already scheduled. The agent can warn the 
user about this situation, it can also suggest the user how to solve it, i.e. suggest which event(s) the user 
should reschedule, or it can ignore the problem. However, the user does not always handle this kind of 
situations in the same way: he wants the agent's assistance in some contexts (e.g. an appointment with the 
doctor overlaps with an appointment with the dentist), but he wants to handle some other overlapping events 
by himself (e.g. two business meetings). Thus, an agent should learn when and how the user wants to be 
assisted in order to personalize its interaction with the user and become then more competent and usable. 
 
In this work, we present a learning algorithm named WATSON that tackles the problem presented before. Our 
algorithm is based on the observation of a user’s actions, particularly on a user’s reactions to the agent’s 
actions. Our algorithm uses association rules to determine what type of assistance the user wants in each 
problem situation that may arise. Association rules are used to model associations among problem situations 
or situations of interest and a user’s assistance requirements. WATSON enables an interface agent to adapt its 
behavior and its interaction with a user to the user’s assistance requirements.  
 
The rest of this work is organized as follows. Section 2 presents our proposed learning algorithm. Section 3 
reports some experimental results. Section 4 describes some related works. Finally, Section 5 presents our 
conclusions and future work. 
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2 WATSON Algorithm 
 
The goal of our algorithm is learning which assistance action the user expects from an interface agent in each 
problem situation or situation of interest that may arise. When an interface agent has to decide among various 
assistance actions to deal with a situation, the WATSON algorithm enables it to choose the one that is the most 
acceptable to the user in that particular situation. The following subsections describe in detail our algorithm. 
 
2.1 Algorithm Inputs and Outputs 
 
The input for our learning algorithm is a set of user-agent interaction experiences in a given application 
domain. An interaction experience Ex is described by four arguments: a problem situation P, the assistance 
action AA the agent executes to deal with the problem, the user feedback UF obtained after assisting the user 
and, when available, an evaluation E of the assistance experience (success or failure). Each problem situation 
P is described by a set of features and the values these features take, P={(featurei,valuei)}. An assistance 
action may be a suggestion, a warning or an action. A suggestion is described by the suggestion the agent has 
made, the problem originating it and a justification of the proposed solution. Similarly, an action is described 
by a set of parameters describing the action performed (these parameters are application dependent), the 
problem originating it and a justification of the decision of executing that action. A warning is simply 
described by the underlying problem situation. The user feedback may be explicit, if the user explicitly 
evaluates the agent’s actions, or implicit if the agent has to obtain it from the user’s actions. In turn, the user 
feedback can be positive or negative. It is positive if the user accepts the assistance provided by the agent, i.e. 
if the assistance action executed by the agent was the one the user expected. Otherwise, the feedback is 
negative. According to the user feedback the assistance experience can, sometimes, be evaluated as a success 
or as a failure. However, if  the agent does not have enough information (e.g. no user feedback) the evaluation 
may be not available.  
 
The output of our algorithm is a set of facts that indicate the assistance action the user requires in each 
problem situation. These facts may adopt one of the following forms: “in problem situation P the user 
requires a warning W”,  “in problem situation P the user requires a suggestion S”, “in situation P the user 
wants the agent to execute action A” or “the user does not want assistance (in situation P)”. Each fact F is 
accompanied by a certainty degree Cer(F), which indicates how certain the agent is about this fact. The 
following sections describe how we obtain facts from the set of user-agent interaction experiences. 
 
2.2 WATSON Overview 
 
The WATSON algorithm uses the information contained in user-agent interaction experiences to formulate 
hypotheses about the user’s assistance requirements. A hypothesis expresses the agent’s belief that the user 
requires a certain type of assistance in a given problem situation. A hypothesis H expresses that whenever a 
situation P occurs, the user will require an assistance action AA with a certainty degree of Cer(H). Then, if a 
hypothesis is highly supported, i.e. if its certainty degree is greater than a threshold value δ, it is turned into a 
fact. The certainty degree of a hypothesis is computed using metrics from association rule mining, as we will 
see later. 
 
Our algorithm uses association rules to formulate hypotheses from a set of user-agent interaction experiences. 
Association rules imply an association relationship among a set of items in a given domain. In our domain, an 
interface agent can use them to discover the relationships among problem situations and the assistance actions 
a user requires to deal with them.   
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 INPUT:  A set Ex of user-agent interaction experiences Exi=<Pi, 
AAi, UFi, Ei> (where P: situation, AA: assistance action, UF: user 
feedback, E: evaluation) 
 
OUTPUT: A set F of facts and a set H of hypotheses representing 
the user's assistance requirements 
 
1. F ← ∅ 
2. H ← ∅ 
3. Generate a set of association rules AR (using Apriori algorithm 
for example) from Ex 
4. AR1 ← Filter out uninteresting rules from AR 
5. AR2 ← Eliminate redundant and insignificant rules from AR1 
6. H ← Transform rules in AR2 into hypotheses (just notation 
transformation) 
7. FOR (i=1 to size of H){ 

8. Find evidence for (E+) and against (E-) H 
9. Cer(Hi) ← compute certainty degree of Hi considering E+ 
and E- 
10. IF (Cer(Hi) ≥ δ) 

11. F ← F ∪ Hi 
   } 

 
Fig. 1. WATSON  Overview 

The association rules generated from the set of user-agent interaction experiences are post-processed in order 
to derive useful hypotheses from them. Post-processing includes detecting the most interesting rules from the 
generated ones, eliminating redundant and insignificant rules, and summarizing the information in order to 
formulate the hypotheses more easily. Once a hypothesis is formulated, the algorithm looks for positive 
evidence supporting the hypothesis and negative evidence rejecting it in order to validate it. The certainty 
degree of the hypothesis is computed taking into account both the positive and the negative evidence. Finally, 
facts are generated from the set of highly supported hypotheses. Figure 1 shows the main steps of our 
algorithm. The following sections explain in detail how we perform each of them. 
 
2.3 Mining Association Rules from User-Agent Interaction Experiences 
 
An association rule is a rule that implies certain association relationship among a set of objects in a database, 
such as occur together or one implies the other. Association discovery finds rules about items that appear 
together in an event (called transactions), such as a purchase transaction or a user-agent interaction 
experience. Association rule mining is commonly stated as follows [1]: Let I={i1,...,in} be a set of items, and 
D be a set of data cases. Each data case consists of a subset of items in I. An association rule is an implication 
of the form X→Y, where X ⊂ I, Y ⊂ I and X∩Y=∅. X is the antecedent of the rule and Y is the consequent. 
The support of a rule X→Y is the probability of attribute sets X and Y occurring together in the same 
transaction. The rule has support s in D if s% of the data case in D contains X ∩ Y. If there are n total 
transactions in the database, and X and Y occur together in m of them, then the support of the rule X→Y is 
m/n. The rule X→Y holds in D with confidence c if c% of data cases in D that contain X also contain Y. The 
confidence of rule X→Y is defined as the probability of occurrence of X and Y together in all transactions in 
which X already occurs. If there are s transactions in which X occurs, and in exactly t of them X and Y occur 
together, the confidence of the rule is t/s. 
 
An example of an association rule is: “30% of transactions in a supermarket that contain beer also contain 
diapers; 2% of all transactions contain both items.” In this example, 30% is the confidence of the rule and 2% 
the support of the rule. Given a transaction database D, the problem of mining association rules is to find all 
association rules that satisfy: minimum support (called minsup) and minimum confidence (called minconf). 
Minsup is an input parameter to the algorithm for generating association rules. It defines the support 
threshold, and rules that have support greater than minsup are the only ones generated. Minconf is an input 
parameter that defines the minimum level of confidence that a rule must possess. 
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There has been a lot of research in the area of association rules and, as a result, there are various algorithms to 
discover association rules in a database. The most popular is the Apriori algorithm [1], which is the one we 
use to find our association rules1. 
 
2.4 Filtering Out Uninteresting and Redundant Rules 
 
In our work, we are interested in some particular association rules generated from a set of user-agent 
interaction experiences. The rules we are interested in are those association rules of the form “problem 
description, assistance action → user feedback, evaluation”. Other combinations of items are irrelevant since 
we are trying to discover which “problem situation-assistance actions” pairs have received a positive user 
feedback and were evaluated, in consequence, as a success. 
 
We can use an intuitive approach [6] to select those rules we are interested in. Relevant (and also irrelevant) 
classes of rules can be specified with templates. Templates describe a set of rules by specifying which 
attributes occur in the antecedent and which attributes occur in the consequent. A template is an expression of 
the form: A1,...,Ak → Ak+1,..,An, where each Ai is an attribute name, a class name, or an expression C+ and C*, 
which correspond to one or more and zero or more instances of the class C, respectively. A rule B1,...,Bh→ 
Bh+1,...,Bm matches the pattern if the rule can be considered to be an instance of the pattern.  
 
We (or a domain expert) can first classify attributes into a class hierarchy or taxonomy, since we might want 
rules containing attributes of a given class. For instance, in our example domain of calendar management, the 
events can be divided in different types: meeting, dinner, party, classes or courses, appointments with doctors 
and others. In turn, we can have different types of meetings, such as business meetings or school meetings, for 
example. Thus, we have the following generalizations:  
 

- Business, School ⊂ Meeting ⊂ Event Type  
- Friends, Family ⊂ Party ⊂ Event Type  

 
We can express these generalizations by using taxonomies as shown in Figure 2.  
 

 Event Type 

Meeting Party 

Business School Friends Family 

Mr. Jones Mr. Smith 
 

Fig. 2. Example of taxonomy 

This taxonomy says that a meeting with Mr. Jones is a business meeting, a business meeting is a meeting, and 
a meeting is a type of event. When taxonomies are present, users are usually interested in generating rules that 
span different levels of the taxonomy. Users may want those rules containing descendants of a given item, for 
example. Our agents will be interested in those rules where the Problem Description and the Assistance 
Action are on the left side and the User Feedback and the Evaluation are on the right side. All of them are 
classes, i.e. non-leaf nodes in the taxonomy. 
 
Once we have filtered out those rules that are not interesting for us, we will still have many rules to process, 
some of them redundant or insignificant. We can then use a technique that removes those redundant and 
insignificant associations and then finds a special subset of the unpruned associations to form a summary of 
                                                           
1 In this work we are not concerned about how association rules are generated. If readers want more 
information about association rule mining they can read [1], [11], [2]. 
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the discovered rules [9]. Many discovered associations are redundant or minor variations of others. Thus, 
those spurious and insignificant rules should be removed. For example, consider the following rules: 
 
R1: EventType=doctor, warning → failure, askforsuggestion [sup:60%;conf:90%] 
R2: EventType=doctor, EventPriority=high, warning  → failure, askforsuggestion [sup:40%,conf=91%] 
 
If we know R1, then R2 is insignificant because it gives little extra information. Its slightly higher confidence 
is more likely due to chance than to true correlation. It thus should be pruned. R1 is more general and simple.  
 
Besides, we have to analyze certain combinations of attributes in order to determine if two rules are telling us 
the same thing. For example, a rule containing the pair "suggestion, failure" and another containing the pair 
"warning, success" are redundant provided that they refer to the same problem situation and they have similar 
confidence values. 

 User-Agent Interaction Experiences 
 

Event type 1 Host 1 Topic 1 Participants 1 Event type 2 Host 2 Topic 2 Participants 2 Action Feedback Evaluation 
Meeting Me Projects Employees Meeting Me Projects Employees Warning Ask for 

suggestion 
Failure 

Meeting Boss Budget Boss and 
workmates 

Party Mother Birthday Family Warning OK Success 

Meeting Boss Projects Me and boss Gym class Me None Me  Warning OK Success 
Appointment Me None Doctor Appointment Me None Dentist Warning Ask for 

suggestion 
Failure 

Meeting Me Projects Employees Meeting Me Projects Employees Warning Ask for 
suggestion 

Failure 

Meeting Me Projects Employees Meeting Me Projects Employees Warning Ask for 
suggestion 

Failure 

 Association Rules  Hypotheses 

Apriori 

….. 
 
 Meeting, me, me, warning => ask for 
suggestion, failure S: 0.66 C: 1 
 
 Meeting, boss, warning => ok, success S: 0.33 
C: 1 
 
 Meeting, me, projects, employees, meeting, me,
projects, employees, warning => ask for 
suggestion, failure S:  0.5 C: 1 
 

1. When there is a conflict between two
meetings organized by the user where the
participants are employees and the topic is
projects, the user prefers a suggestion instead
of a warning 

2. When there is a conflict between two
organized by the user and one of them is a
meeting, the user prefers a suggestion instead
of a warning 

3. When there is a conflict between two events
and one of them is a meeting organized by the
user’s boss, the user accepts a warning 

4. …. 

   Post-processing 

 
Fig. 3.  Deriving hypotheses from user-agent interaction experiences 
 
To avoid considering obsolete assistance experiences both to derive hypotheses and to validate them, our 
algorithm deletes old transactions from the database. The remaining rules are those that we consider to build 
hypotheses. Figure 3 shows, as an example, how a set of hypotheses is derived from a set of user-agent 
interaction experiences. In this example, the assistance actions involved are warnings about overlapping 
events. 
 
2.5 Building Facts from Hypotheses 
 
Once the WATSON algorithm has formulated a set of hypotheses it has to validate them. Our algorithm tries to 
validate a hypothesis by analyzing the evidence for and against it. If the hypothesis involves a warning, the 
evidence supporting it is composed of those assistance experiences in which the user has accepted the 
warning without asking for a suggestion, and those in which the user would have preferred a warning instead 
of a suggestion. The evidence against the hypothesis is given by those interaction experiences in which the 
user has requested a suggestion after the agent has warned him about a problem. If the hypothesis involves a 
suggestion, it is supported by those interaction experiences in which the user has requested the suggestion and 
those in which the user has accepted an autonomous suggestion from the agent. The evidence against this kind 
of hypothesis is given by those experiences in which the user has neglected suggestions.  
 
The evidence for and against a hypothesis can be obtained by analyzing some of the association rules 
generated from the interaction database. For example, if we are trying to prove a hypothesis obtained from the 
rule “Situation X, warning → fbk1, success Sup:x Conf:y”, and we have another rule that expresses “Situation 
X, warning → fbk2, failure Sup:z Conf:w" (where fbk1 and fbk2 are feedback items) we should discard the 
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hypothesis or at least adjust its certainty degree. Given a rule X→Y originating a hypothesis H, a rule of the 
form X→ Z where Z∩Y=∅ is considered as a negative evidence, while a rule of the form X→Z where 
Z∩Y≠∅ is considered as a positive evidence. The certainty degree of a hypothesis H is computed as a 
function of the supports of the rule originating the hypothesis and the rules considered as positive and 
negative evidence of H. The function we use to compute certainty degrees is shown in Equation 1, where α, β 
and γ are the weights of the terms in the equation (we use α=0.7, β=0.15 and γ=0.15), Sup(AR) is the support 
of the rule originating H, Sup(E+) is the support of the rules being positive evidence, Sup(E-) is the support of 
the rules being negative evidence, Sup(E) is the support value of an association rule taken as evidence 
(positive or negative), r is the amount of positive evidence and t is the amount of negative evidence. 
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3 Experimental Results 
 
In order to evaluate the performance of our learning algorithm we used one of the metrics defined in [3]. The 
precision metric measures an interface agent’s ability to accurately provide assistance to a user. We define our 
precision metric as shown in Equation 2. 
 

actionsofnumber
actionscorrectofnumberM precision =  (2) 

 
The precision metric is used to evaluate the performance of an interface agent when it has to decide among a 
warning, a suggestion or an action. In this case, for each problem situation, we compare the number of correct 
assistance actions against the total number of assistance actions the agent has executed. An assistance action 
is correct if it is the one the user expected in a given problem situation. The user's feedback (implicit or 
explicit) tells us whether an assistance action is correct or not. 
 
We tested our algorithm with a set of 20 users of an agenda system. For this purpose, we incorporated the 
WATSON algorithm into an agent that provided assistance to these users. We compared the assistance 
capability of this agent with WATSON and without WATSON. Half of the users used the agent with WATSON 
and the other half used the agent without our algorithm. We obtained the user feedback after each assistance 
action executed by each agent and we classified the assistance experience as a success or as a failure.  
 
The graph in Figure 4 plots the evolution of the precision metric both for an agent using WATSON and for an 
agent not using it. For each assistance session the graph plots the average precision value. We used the 
following numeric parameters to perform the tests: minconf = 0.8, minsup = 0.2, δ = 0.5, number of 
association rules generated = 2000, number of assistance sessions = 14, interactions between two consecutive 
assistance sessions = 5. 
 
We can observe that the number of correct assistance actions is bigger for the agent using our learning 
algorithm. There is a pattern of improving performance in our agent's assistance capability, which indicates 
that the WATSON algorithm enables agents to improve their interactions with the users they are assisting. 
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Fig. 4. Evolution of agents’ precision with WATSON 

4 Related Work 
 
Related works, mainly in the area of mixed-initiative interaction, have considered different approaches to 
decide among several possible agent actions to assist a user. Some of them adopt a decision theoretic 
approach, such as [8] and [4], and others use confidence values associated to actions to decide what to do, 
such as [10] and [7]. However, although different factors are considered to compute the benefits and costs of 
different actions, and to calculate confidence values, those taking into account how the user wants to interact 
with the agent are missing in these approaches. 
 
5 Conclusions and Future Work 
 
Our work contributes to both the interface agent and the human-computer interaction areas. The WATSON 
algorithm enables interface agents to discover how to best assist users, personalizing and improving in this 
way the interaction with each of them. The results obtained so far are quite promising, since our agents have 
improved their assistance capabilities and their assistance actions tend to the users’ needs.  
 
In this work we have proposed the utilization of association rules to discover the relationships between a 
problem situation and the required assistance actions. We are now studying other techniques, such as 
Bayesian Networks and Influence Diagrams (an extension of Bayesian Networks) [5], in order to analyze 
which technique performs better regarding our algorithm. 
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