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Abstract 
 

In this paper, a parameter estimation problem for a Takagi-Sugeno fuzzy dynamic 
system is formulated under the assumption that the premises in the membership 
functions are known. A linear expression in consequent parameters is obtained 
under this assumption. If the system is time-varying, the parameters can be 
determined by recursive estimation techniques. As an alternate approach, the use 
of multi-resolution wavelets is proposed. Furthermore, a parameter estimation 
toolbox for fuzzy dynamic models is developed which is then applied to a simple 
example and to the Mackey-Glass chaotic time series. 
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1 Introduction 
 

There are two known methodologies for model based fault detection and diagnosis. The first one consists 
in the comparison of normal behavior patterns with respect to fault situations [Basseville, 1993], [Evsukoff, 
2001]. The second consists in the analysis of signals generated (residues) in the different scenarios. For these 
purposes observers or Kalman filters are generally employed [Patton, 1989]. 
 

The design of these methodologies requires the availability of a dynamic model of the process, whose 
parameters are estimated from the input and output data [Ljung, 1999]. If the process or the system is non-
linear, then polynomial (Volterra, Hammerstein or Wiener, [Westwick, 1995]), neuronal [Mastorocostas, 
2002], or fuzzy models [Johansen, 2000], [Schiavo, 2000] can be used.  
 

This paper considers the case of non-linear time-varying systems. In this situation, the literature presents 
two approaches. The first of them employs recursive estimation, such as recursive least squares (RLS) 
methods or Kalman filters, [Tsypkin, 1992], [Niedzwiecki, 1994], [Chowdhury, 2000]. The second is based 
on the representation of time-varying parameters through time-invariant basis series, which converts the TV 
problem into an invariant one [Grenier, 1983], [Doroslovacki, 1998], [Eom, 1999]. 
 

In order to deal with system non-linearities, Takagi-Sugeno dynamic fuzzy models [Takagi, 1985], 
[Johansen, 2000], [Ho, 2001] are proposed. To take into consideration the time-varying characteristics of the 
system, it is assumed that the consequent parameters change with time. Wavelets [Tsatsanis, 1993] are used as 
an alternative to recursive estimation. 
 
 
2 Takagi-Sugeno type dynamic models 
 

Given a non-linear dynamic system with input u(t) and output y(t), a Takagi-Sugeno model is described by 
the following R rules [Jamshidi, 1993]: 
 

Rule r, r=1,...,R: 
 
if  

)1( −ky  is π  and ... and  is π  ,r1 )( anky − ,rna
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In the last expression, the term yr(k) refers to the output of an ARX (Auto-Regressive with eXogenous 

inputs) sub-model, defined by: 
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where d is the input delay, and n=na+nb is the total number of parameters in each sub-model.  
 

The term π  denotes the fuzzy set of the ri,r
th rule and ith term in the sub-model. For each fuzzy set, it 

corresponds a membership function . The rule activation degree  of the r
i,rπµ rβ th rule at instant k is given 

by: 
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where represents the fuzzy OR operator. Using fuzzy inference, the following expression is obtained 
[Jamshidi, 1993]: 
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If the membership functions  are considered known and if a sufficient number of present and past 

input u(k) and output y(k) values are available, then it is possible to apply (4) and determine the consequent 
parameters vector P using a parameter estimation method [Takagi, 1985]. 

i,rπµ

 
 
3 Identification of time-varying fuzzy dynamic models  
 

In fuzzy time-varying dynamic models, the consequents coefficients can change with time. In this case, 
expression (4) is useful for the estimation of those parameters, through recursive techniques [Ljung, 1999]. 
 

This paper proposes the use of wavelets for the time-varying parameters estimation [Tsatsanis, 1993], 
[Galvao, 2002]. The wavelet analysis allows representing signals in terms of coefficients that express both 
variability in time and variation speed [Ho, 2001]. Thus, the analysis of changes in the signals can be done 
with a reduced number of coefficients of a wavelet decomposition. Another advantage of the wavelet analysis 
is that the nature of the approximation of signals through the wavelet basis is specially suited for 
characterizing the abrupt changes and faults in dynamic systems [Lada, 2000]. 
 

In the following section, the application of wavelets in parameter estimation is briefly described. 
 
 
4 Time-varying parameter estimation through wavelets 
 
4.1 Background in wavelets 
 

Wavelet analysis emerges as a natural extension of Fourier analysis for the approximation of signals in 
. In this case, the “mother function” for the space basis is not a sinusoid but a wavelet [Chui, 1992a], 

[Schumaker, 1994]. 
)(L2 ℜ

 
Thus, it is possible to approximate signals through the shifts and scalings of a mother wavelet function 
 of the form ψ , which allows to express any function f(t) as a wavelet 

series: 
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The selection of the mother function ψ  is not trivial. Frequently, stability conditions are imposed over 
spectrum of functions ψ , convergence of the series (6), and orthogonal relationships among the various 

spaces generated by ψ  [Chui, 1992b], [Schumaker, 1994]. 

)(, tij

)(, tij

 
4.2 Matrix representation of the multi-resolution analysis 
 

The family function ψ  described induces multiple levels of decomposition in the spaces W  

. A function φ  is called a scaling function if it is possible to obtain the decompositions over the 
spaces W  as a unique decomposition over V . Thus, based on the functions ψ  and 

, it is possible to decompose signals as [Chui, 1992a]: 
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where f j(t) is the projection of the function f(t) over Vj, and g j(t) is the projection of f(t) over Wj. The integers 
j0 and j1 define upper and lower levels for the decomposition. 
 

In the following, time-discretized signals are considered, which are represented as column vectors. Since 
fj(k) and gj(k) are projections over Vj and Wj respectively, we can write: 
 

∑ =−=
i

JJJJ
i

J ckikckf )()2()( φφ

JJJJJ

 

∑ =−=
i

i dkikdkg )()2()( ψψ  
(8) 

 
(9) 

 
In the last expressions, the terms cJ and dJ are wavelet coefficients vectors, commonly called approximation 
and detail coefficients, respectively. Additionally, the terms φ  and ψ  are wavelet matrices. For simplicity, 
the details of its composition are omitted, but it is possible to show that they has the form: 
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where A j and B j matrices contain scalings and shiftings of the functions ψ  and φ  as columns. Then: 
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4.3 Parameters in a fuzzy Takagi-Sugeno type system 
 

If we assume that f(t) is a generic parameter of a time-varying system, then (11) is an approximation of f(t) 
by f j1(t), which corresponds to its multi-resolution decomposition at j1

th level. 
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Particularly, in a time-varying fuzzy model, each consequent parameter can be expressed as a wavelet 
decomposition. Applying the decomposition (11) over the fuzzy model (4), we obtain: 
 

CkkZky )()()( Φ=  (13) 
 

Therefore, considering a time series in k, the problem of determining the parameter vector f can be 
reduced to a regression problem in C, given that f and C are related in an approximate manner by (11). 
 
4.4 Selection of the decomposition structure for parameter estimation 
 

From equation (13), it is possible to show that the matrix Z  is a  by  block, where n  is the 

number of terms in each wavelet expansion. Since n  can be expressed as a fraction α  of the length 

of data vectors , the regression problem (13) generates infinite solutions for C, which is numerically 
expressed as an ill-conditioned pseudoinverse matrix. 
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In this case, the conditioning norm for Θ  [MathWorks, 2002]: ΦΦ Z)Z( T=

 
1)(cond −= ΘΘΘ  (14) 

 
takes considerably big values, instead of values near 1. This can be interpreted as numerical deviations in the 
pseudo-inverse Θ  respect to a rectangular inverse for . In (14), ||  is the norm obtained from taking 
the highest value of the diagonal matrix from the singular value decomposition (SVD) [MathWorks, 2002]. 

1− ΦZ ||⋅

 
This shows that the use of the pseudo-inverse matrix in (13) is not an appropriated method for the 

estimation of C.  
 

In this way, the selection of coefficients in the wavelet decomposition is proposed as a solution for the 
conditioning problem [Tsatsanis, 1993]. The initial search space consists of the terms associated to the 
projections in j0-j1+1 wavelet spaces. Then, to reduce the search space, Multiple Hypothesis Tests are 
performed over different decomposition structures. In [Lada, 2000] various alternatives to perform such tests 
are mentioned. 
 

The Hypothesis Test formulated between two models is: 
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where Ci is a vector of coefficients of length di, which defines the wavelet decomposition if the hypothesis Hi 
is true.  
 

For two decompositions with equal number of coefficients, the hypothesis are evaluated using the mean 
square error  corresponding to the obtained parameters, with  being the 

estimation of  using the decomposition C
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When two decompositions have different number of coefficients, the test is decided through: 
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According what it was stated, Figure 1 shows the algorithm used to select between two models. In this 

work, different schemes for selection of coefficients are tested. The following are among them: 
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• Successive addition of coefficients. 
• Successive addition of coefficients with subtraction cycles. 
• Monte Carlo search. 
• Fixed size models. 

 
The first three schemes are initialized with a model without coefficients; this is done in order to further 

increment the number of parameters in the structure. The fixed size technique does not require search. 
 

Finally, the decomposition structure obtained is fed into a multiple regression algorithm. The regression 
problem is solved through to the following equations [MathWorks, 2002]: 
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where R is the orthogonal matrix obtained by the QR decomposition of .  ΦZ
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IF t>0 

Call with 
E2’=E1, E1’=E2 
d2’=d1, d1’=d2 

t=-1 t=1 Calculate t 

IF E2= E1 

IF d2<d1 

TestModels(E2,E1,d2,d1) 

IF d2>d1 

Fig. 1. Selection between two models 
 
5 Toolbox for parameter estimation for time varying systems 
 

A non-linear time-varying parameter estimation MATLAB toolbox was developed based on the previous 
concepts. Its basic data structures are presented in Appendix A.1, while Appendix A.2 presents its main 
functionalities. 

 
The following sections describe two applications of the toolbox oriented to non-linear time-varying 

systems. 
 
5.1 Example 1: Fuzzy dynamic system with time-varying parameters 
 

This first example is included for testing purposes. Let's consider the following two rule TS fuzzy 
dynamic system: 
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Rule r, r=1,2:  
if  

)1( −ky  is π  
,r1

then 
)()1()1()( ,1,1 kekubkyaky rrr +−+−=  

 
The parameters a1,r and b1,r vary with time; disturbances er(k) are non-correlated white noise signals with a 

standard deviation σ . The fuzzy sets π  and π  are characterized by two symmetric triangular 
membership functions on the interval [0,1].  

0.01
re = 11, 21,

 
Figure 2 shows the system's input and output signals obtained for an initial condition y(0)=1. The input 

u(k) is a PRBS (Pseudo Random Binary Sequence) signal with umin=0.05, umax=0.45, registry length 211, and 
clock time τ =1. 

 

 
 

Fig. 2. Input and output signals 
 

Figures 3 and 4 show the time evolution of the process and the estimated parameters. For such, the 
function FuzzWavEst present in the toolbox was employed, selecting in this case the wavelet family db1 
(First order Daubechies). Additionally, the limits of the decomposition were set at Jmin=7 and Jmax=10. 
For structure selection, the fixed size models method has been used. 

 
Table 1 presents the absolute and relative RMS errors of each estimated parameter, with the input and 

output signals shown in Figure 2. The mean relative RMS error oscillates between 0.0171 and 0.086. Such 
indicates a good determination of the unknown parameters if is considerated that the estimation has been 
performed by minimizing the estimation RMS error of the output y(k). 

 

 
 

a1,1 a1,2 

Fig. 3. Real (solid) and estimated (dashed) parameters a1,1 and a1,2 
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b1,2 b1,1 

Fig. 4. Real (solid) and estimated (dashed) parameters b1,1 and b1,2 
 

Table 1: Estimation errors in Example 1 
Parameter Mean RMS RMSREL 

a1,1 0.397 0.0161 0.0405 
a1,2 0.737 0.0126 0.0171 
b1,1 0.186 0.0160 0.0860 
b1,2 1.350 0.0331 0.0245 

 
 
5.2 Example 2: Mackey-Glass chaotic series 
 

The Mackey-Glass chaotic series is defined by the following differential equation, [Yamakawa, 1994], 
[Schiavo, 2000]: 
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with τ =17 and x(0)=1.2. For the data generation, the x(t) variation between t=0 and t=1000 with sample time 

=1 is considered (see Figure 5).  t∆
 

 
 

Fig. 5. Evolution of output of Mackey-Glass chaotic series 
 
For estimation purposes, it is necessary to transform the original autonomous system into a discrete-time 

system with input u(k). In that sense, the following variables are considered as inputs: 
 

[ ])()6()12()18()( kxkxkxkxku −−−=  
 
and the output is given by: 
 

[ ])6()( += kxky  
 

The generation of data for estimation is made considering the first 500 samples, starting from k=118. 
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In this case, the fuzzy sets for the model have been determined using fuzzy clustering (Fuzzy C-Means) 
through the MakeFStr Toolbox utility. In this manner, the structure of the obtained fuzzy model for 3 
clusters is the following: 
 

Rule r, r=1,...,3:  
 
if  

)18( −kx  is π  and x  is π  and 
,r1 )12( −k ,r2

)6( −kx  is π  and  is ,rπ  ,r3 )(kx 4

then 
)()6()12()18()( ,4,3,2,1 kxakxakxakxaky rrrr +−+−+−=  

 
Figure 6 shows the evolution in time of the estimated parameters for the first fuzzy rule using 

FuzzWavEst. The figure also shows the performance of the Toolbox for the db2 wavelet family (Second 
order Daubechies) with decomposition limit levels Jmin=7 and Jmax=9. 

 

 
 

a1,1 

a1,2 

b1,1 

b1,2 

Fig. 6. Estimated parameters for the first fuzzy rule 
 

Figure 7 shows the estimation error variation. For the considerated data, the RMS error is 0.0475, 
equivalent to a mean relative RMS error of 0.051. In this case the parameter estimation also performs a good 
fit, even-though the structure of the plant is unknown. 
 

 
 

Fig. 7. Estimation error 
 

For validating the parameter estimation process, the initial condition of the autonomous system has been 
modified from x(0)=1.2 to x(0)=0.9. The results are shown in Figure 8 for the first 500 data samples from 
k=118. It is shown that the simulation with the new data based on the varying parameters generates a 
prediction RMS error of 0.190, which is equivalent to a relative RMS error of 0.204. 
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Fig. 8. Real (solid) and predicted (dashed) output, and prediction error 

 
 
6 Conclusions 
 

This work introduces a parameter estimation method applicable to non-linear time-varying dynamic 
systems. A toolbox was developed for such purpose that utilizes non-linear fuzzy models and parameter 
estimation based on wavelets. 
 

In the first example was shown that the time evolution of the estimated parameters corresponds to the 
parameters of the real TS model, which are supposedly unknown. In the second example, reduced estimation 
errors were obtained. The data validation indicates that the modelling through time-varying parameters 
represents reasonably the process dynamics independently of the initial condition introduced. 

 
In the special case of the Daubechies wavelet family, due to the discontinue nature of the basis functions, 

it is possible to obtain adequate trajectories for estimated parameters in presence of abrupt and smooth 
changes.  
 

A topic under current research by the authors is the application of the method to on-line prediction using 
recursive parameter estimation. Also, applications to fault detection and diagnosis in simulated and real 
processes are under investigation. 
 
 
7 Acknowledgements 
 

The authors would like to thank FONDECYT for the financing of the project 1020141, Fault Detection 
and Diagnosis in Non-Linear Time-Varying Systems. 
 
 
References 
 
Basseville M. and Nikiforov I. V. Detection of Abrupt Changes—Theory and Application, Prentice Hall, 
Englewood Cliffs, N.J., (1993). 
 
Chowdhury F. N. Input-Output Modeling of Nonlinear Systems with Time-Varying Linear Models, IEEE 
Transactions on Automatic Control, vol. 45, (7), (2000), pp. 1355—1358. 
 
Chui Ch. K. An Introduction to Wavelets, Academic Press, Inc., (1992a). 
 
Chui Ch. K. (ed). Wavelets, A Tutorial in Theory and Applications, Academic Press Inc., (1992b). 
 
Doroslovacki M., Fan H. and Yao L. Wavelet-Based Identification of Linear Discrete-Time Systems: 
Robustness Issue, Automatica, vol. 34, (12), (1998), pp. 1637—1640. 
 



J. F. Araya and A. Cipriano, Parameter estimation in nonlinear time-varying, EJS 6(1) 21-33 (2004) 31 

Eom K. B. Time-Varying Autoregressive Modeling of HRR Radar Signatures, IEEE Transactions on 
Aerospace and Electronic Systems, vol. 35, (3), (1999), pp. 974—988. 
 
Evsukoff A. and Schirru R. Neuro-Fuzzy Systems for Fault Detection and Isolation in Nuclear Reactors, 
Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia, vol. 2, paper 
P425, (2001). 
 
Galvao R. K. and Becerra V. M. Linear-Wavelet Models for System Identification, Proceedings of the IFAC 
15th Triennial World Congress, Barcelona, Spain, paper T-Tu-E01-6, (2002). 
 
Grenier Y. Time-Dependent ARMA Modeling of Nonstationary Signals, IEEE Transactions on Acoustics, 
Speech, and Signal Processing, vol. 31, (4), (1983), pp. 899—911. 
 
Ho D. W. C., Zhang P. A. and Xu J. Fuzzy Wavelet Networks for Function Learning, IEEE Transactions on 
Fuzzy Systems, vol. 9, (1), (2001), pp. 200—211. 
 
Jamshidi M., Vadiee N., Rose T. J. and Ross T. Fuzzy Logic and Control: Software and Hardware 
Applications, PTR Prentice Hall, Englewood Cliffs, New Jersey 07632, Vol. 2, (1993).  
 
Johansen T. A., Shorten R. and Murray-Smith R. On the Interpretation and Identification of Dynamic Takagi-
Sugeno Fuzzy Models, IEEE Transactions on Fuzzy Systems, vol. 8, (3), (2000), pp. 297—312. 
 
Lada E. K., Lu J. and Wilson J. R. A Wavelet-Based Procedure for Process Fault Detection, IEEE 
Transactions on Semiconductor Manufacturing, vol. 15, (1), (2000), pp. 79—90. 
 
Ljung L. System Identification, Theory for the User, PTR Prentice Hall, 2nd ed, Upper Saddle River, N.J., 
(1999). 
 
Mastorocostas P. A. and Theocharis J. B. A Recurrent Fuzzy-Neural Model for Dynamic System 
Identification, IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 32, (2), (2002), pp. 176—
190. 
 
Matlab Function Reference, The MathWorks, Inc., 3 Apple Hill Drive, Vol. 3, Version 6, (2002). 
 
Niedzwiecki M. Identification of Time-Varying Systems with Abrupt Parameter Changes, Automatica, vol. 
30, (3), (1994), pp. 447—459. 
 
Patton R. J., Frank P. M. and Clark R. N. (Eds). Fault Diagnosis in Dynamic Systems, Theory and 
Applications, Prentice Hall, (1989). 
 
Schiavo A. L. and Luciano A. M. Powerful and Flexible Fuzzy Algorithm for Nonlinear Dynamic System 
Identification, IEEE Transactions on Fuzzy Systems, vol. 9, (6), (2001), pp. 828—836. 
 
Schumaker L. L. and Webb G. (eds). Wavelets, A Tutorial in Theory and Applications, Academic Press, Inc., 
(1994). 
 
Tsypkin Y. Z. and Bondarenko M. V. An Optimal Algorithm for Identification of Rapidly Time-Varying 
Systems, IEEE Transactions on Automatic Control, vol. 37, (2), (1992), pp. 237—239. 
 
Takagi T. and Sugeno M. Fuzzy Identification of Systems and its Application to Modelling and Control, IEEE 
Transactions on Systems, Man and Cybernetics, vol. 15, (1), (1985), pp. 116—132. 
 
Tsatsanis M. K., Giannakis G. B. Time-Varying System Identification and Model Validation Using Wavelets, 
IEEE Transactions on Signal Processing, vol. 41, (12), (1993), pp. 3512—3523. 
 



J. F. Araya and A. Cipriano, Parameter estimation in nonlinear time-varying, EJS 6(1) 21-33 (2004) 32 

Westwick D. T. Methods for the Identification of Multiple Input Nonlinear Systems, Tesis (Doctor of 
Philosophy), Department of Electrical Engineering and Biomedical Engineering Department, McGill 
University, Montreal, (1995). 
 
Yamakawa T. A Neo Fuzzy Neuron and Its Applications to System Identification and Prediction of Chaotic 
Behavior. In: Zurada J. M., Marks II R. J., Robinson C. J. (eds). Computational Intelligence: Imitating Life, 
IEEE Press, (1994), pp 383—395. 
 
 
Appendix: Toolbox Structure 
 
A.1 Toolbox basic data structures 
 

The following paragraphs present the data structures used in this toolbox.  
 
N: Number of samples considered for the data analysis. 
 

R: Number of rules of the fuzzy model considered, and also number of clusters in a model built on fuzzy 
sets. 

 

n: Number of variables on the Input Data. 
 

TH: System input data matrix. 
 

Y: System output data column vector. 
 

FStr: Data structure for fuzzy sets representation in a Takagi-Sugeno model. 
 

WH: Fuzzy activation degrees matrix for each sample and fuzzy rule. 
 

Str: Wavelet family.  
 

Jmin, Jmax: Minimum and maximum levels for a wavelet decomposition. 
 

Typestr: Coefficient class. typestr='a': approximation coefficients. typestr='d': detail 
coefficients. 
 

C: Conditioning number for the main problem matrix X, equal to ||X||||X-1||. 
 

lopt, laux, l: Vectors for obtained, auxiliary and initial decomposition structure, respectively. 
 

Ye: Estimated output data. 
 

Ae: Estimated parameters for the chosen Takagi-Sugeno structure. 
 
A.2 Basic functions of the Toolbox 
 
The following lines present the prototypes of the principal developed functions. 
 
[Ye,Ae,c,lopt,l]=FuzzWavEst(TH,WH,Y,str,Jmin,Jmax): 

Parameter estimation for Takagi-Sugeno models for nonlinear time-varying systems, using 
wavelet multi-resolution decomposition. 

 
[Ye,Ae,c]=ArxWavEst(TH,Y,str,Jmin,Jmax): 

Parameter estimation for ARX models for nonlinear time-varying systems, using one shot least 
squares techniques. 

 
[TH,Y,A]=MakeExample<i>(N): 

Data generation routines of nonlinear time-varying systems. <i>=1 corresponds to an ARX system, 
<i>=2 to a TS-ARX system and <i>=3 to the Mackey-Glass autonomous system.  
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[FStr,WH]=MakeFStr(TH,R): 

Generation of the premises structure for a Takagi-Sugeno model based on input data and desired 
number of rules. Fuzzy Clustering (C-Means) is applied using the fcm utility, exported from the 
MATLAB Fuzzy Logic Toolbox. 

 
Pdemo<i>: 

Demos for FuzzWavEst tool.  
 
[h,t]=TestModels(MSE2,MSE1,d2,d1,N): 

Perform an hypothesis test between two wavelet decomposition models based on its mean square 
errors MSE1 and MSE2 and its number of parameters d1 and d2. h=0 implies that the model 2 is 
rejected, and h=1 indicates that such model is accepted.  
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