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Abstract

We present in this paper a secure deterministic cipher and decipher mechanism
based on the well known Lorenz’s dynamic system. The cipher process is
performed by the combination of the message to be cipher and the states of the
Lorenz’s dynamic system, which act as the cipher key. The decipher process is
carried out by the reconstruction of the key, which is generated using a Lorenz’s
system state observer. The observed key is then used in the decipher process in
order  to recover  the ciphered message.
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1 Introduction

Oscillatory chaotic systems have been of grate impact in Physics, Biology, Communications Engineering,
Control Theory and Atmospherics Science; as examples, we can mention the lots of numbers in magazines
and books published in the last decades ([Holden, 1984], [Acheson, 1997], [Holden, 1986], [Alligood, 1996],
[Devaney, 1989] and [Devaney, 1990]). Most of this books and magazines focus their attention in the study of
chaotic systems and their applications, like chaotic circuits synchronization, used in Communication
Engineering and Control ([System and Control Letters, 1997], [Chaos Synchronization and Control, 1993]
and [Chaos Synchronization and Control, 1997]), in the study of planets behavior, in prediction of population
growth and, in the predictive study of ecosystems adaptability ([Conrad, 1983] and [Conrad, 1981]).

The main issue in this article its the application of Lorenz's systems (in their discrete approximation form), to
cipher and decipher any kind of information represented in a digital way. The cipher process its carried out
generating a cipher key, as long as the information that will be cipher; the decipher process consists in the
reconstruction of the cipher key and use it with the inverse process its carried out by a cipher system (in their
discrete approximation form); this system create a set of chaotic states, (x1k, x2k, x3k) where k = {1, 2, …, n},
where two of them {x2k, x3k }, are mixed with the messages or the signals to be send { s1k, s2k }, by means of

a simple arithmetic operation Mk = ( x1k, x2kλ1 + s1k, x3kλ2 + s2k ). Where Mk is the vector transmitted to

the receiver system, { s1k, s2k } are the messages that we want to cipher, λ1 and λ2 are scaling factors, not
equal to zero, selected in a way that the chaotic signals { x1k, x2k } will be larger enough comparative with
the messages { s1k, s2k }.

The receiver circuit or decipher is able to reconstruct the cipher messages { s1k, s2k } almost exactly from the

received chaotic signals: Mk = ( m1k, m2k, m3k), i.e. )( 1221 λkkk xms
∧∧

−= and )( 2332 λkkk xms
∧∧

−= ,

where 

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
 ∧∧

kk xx 21 , , are the reconstructed chaotic signals, by the decipher system, such that ε≤−
∧

ikik cc , i

= 1, 2, for every k > k* > 0  and ε  is a positive constant near to zero.
This cipher/decipher mechanism, is based on chaotic circuits synchronization (see [Nijmeijer, 1997],[Sira-
Ramírez, 2001], [Carrol, 1991], [Kuomo, 1993], [Fradkov, 1997], [Huijbert, 1998] and [Pecora]). We say that
two chaotic systems, sender and receiver, are synchromesh, if not matter what initial conditions start the
sender and receiver systems, when time goes to infinity the error between both systems is equal to zero.
Synchronize two chaotic systems is not a trivial problem, because it is possible that even very small
differences between the initial conditions of both systems may cause an exponential error amplification
[Orgozalek, 1993].

Worthy, we mention that almost every proposed synchronization scheme, where made in theoretical and
academic frame. Some of them where made in a real time experiment, and achieve an efficiency in the
transmitted signal recovery, between 85% to 95% [Kuomo, 1993]. Due to the fact that it is not possible to
build two identical circuits, i.e., there will be always some variations in parameters, like resistance and
inductance and there. The performance achieved is good enough for some applications, like voice
transmission; however, is not reliable to be used in the cipher/decipher information process (see [Gerald,
1994], [Pfleeger, 1996], [Schneier, 1996] and [DeMillo, 1983]).

This article is organized in four sections, the first one where presented as brief introduction on chaos and their
diverse applications; the second one propose an state observer system for the Lorenz chaotic circuit; in the
third one, we develop a cipher/decipher, mechanism, based on the chaotic properties of the Lorenz chaotic
circuit and their respective state observer; in the last section, we implement a numerical application to cipher
and decipher information, and show some examples of an image ciphered and deciphered, using this
application. Finally, we present the conclusions.
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2 A simple Lorenz system-based observer

First of all, let us present the well known three dimensional chaotic Lorenz's dynamical system

Definition 1 Continuous Lorenz's dynamical system:

)),()(()( 121 txtxtx −=
•

σ

),()()()()( 31212 txtxtxtrxtx −−=
•

(1)

),()()()( 3213 tbxtxtxtx −=
•

),()( 1 txty =

where: [ ]Txxx )()()( 321 ⋅⋅⋅  denotes the state vector; )(⋅y denotes the output and { }br,,σ denotes

the real parameters set of the system. We suppose that 0>σ .

We introduce now our:

Defnition 2  Lorenz's dynamical state observer:

,))()(())()(()( 11121

∧∧∧
•
∧

−−−= txtxtxtxtx γσ
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∧∧

•
∧

−−= (2)

),()()()( 323 txbtxtytx
∧∧

•
∧

−=

where: 

T

xxx 



 ⋅⋅⋅

∧∧∧

)()()( 321  denotes the observed states. The real parameter γ is positive.

Taking into account the previously defined Lorenz's dynamical system and its corresponding state observer,
we introduce the following:

Definition 3 Error system:

)()()()( 1121 tetetete γσσ −−=
•

),()()()( 3122 tetxtete −−=
•

(3)

),()()()( 3213 tbetetxte −=
•

Where 
∧

−⋅=⋅ iii xxe )(:)( , for i ∈ { 1, 2, 3 }, denotes the i-th state observation error.

As is established by the following result, the observation error  { })(),(),( 321 ⋅⋅⋅ eee  converges asymptotically

to the zero vector { }0,0,0 .
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Theorem 4 Let 

T
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
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 ⋅⋅⋅ )()()( 321 and 
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)()()( 321  be the states of the Lorenz’s system (1), and

the states of the Lorenz’s observer system, respectively. For any constant 0≥k ,
T

xxx 
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)()()( 321 converges asymptotically to 
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Proof. Please consider the Lyapunov’s function
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Clearly )(⋅V  is a positive definitive function. Moreover:
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which concludes the proof.

Remark 5 As is established in Theorem 4, the observer (2) always recovers the motion of the Lorenz’s system
(1) (assuming 0≥γ and 0>σ ). This property of the observer will be applied in the sequel to implement a

cipher/decipher information mechanism: the set of parameters { }br,,σ plays the role of the key involved in

both the cipher and decipher processes.

3 Information Cipher and Decipher Mechanism

Taking into account the result introduced by Theorem 4, we propose in this section a cipher and decipher
mechanism. As was pointed out in Remark 5, the set of parameters of the Lorenz’s chaotic system will play
the role of the key involved in the cryptography process. The methodology that we present here requires  a
discrete approximation of both the chaotic system (1) and the state observer (2). In this section we apply the
previous theorem to cipher and decipher digital signals. A numerical algorithm is then implemented to hide
the confidential information through its combination with the output of the chaotic system (cipher process).
The combination exploits the finite representation of numerical computations, in order to avoid non allowed
recovering of the confidential information. The decipher process is implemented through the state observer,
i.e., the confidential information is recovered just separating the observer state-based information from the
chaotic signal.

We proceed now to the discretization of both the chaotic system (1) and the state observer (1). We use a well-
know Runge-Kutta’s method (see for instance [Gerald, 1994]).
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3.1 Discrete approximations

Let define 

T

T xxxX 
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rewritten as follows:
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Suppose now that there exist a real number 0>h , such that:
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Then, (7) and (8) describe a Runge-Kutta’s discrete approximation to (1) (see for instance ([Acheson, 1997]).
In fact, this discrete approximation is just called the Lorenz’s system approximation. In the same way:
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describe the observer system approximation.
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Remark 6 To keep a good discrete system behavior, i.e., near to the continuous system behavior, we take h

(the integration step) in the order of 410− . As a result of this choice, we can guarantee that

,
2

kh
kk ceXX λ−

∧

≤− where 0>λ and c is a positive constant greater than zero. This final constant

depends on both the initial conditions of the Lorenz’s system approximation and the initial conditions of the
observer system approximation. In fact, if both initial conditions coincides (which is obviously difficult to

achieve) c = 0. If possible, it is suitable to have 0

∧

X  near to 0X .

3.2 Cipher and decipher numerical algorithm

We present now our main result: a cipher and decipher numerical algorithm based in the discrete
approximations presented above. In the sequel, DCLCD-Algorithm will stand for Discrete Chaotic Lorenz
Cipher and Decipher Algorithm.

Algorithm 7 DCLCD-Algorithm.

1. We send to the authorized recipient the approximated Lorenz system output (see (7) and (8)), i.e.,

kk xy 1= . The authorized recipient is the one who has the secrete key, i,e,, the state observer (see (9)

and (10).
2. Once both the Lorenz system approximation and the state observer are working, we start the cipher

process. In order to minimize the level of misinformation, the cipher process must start after a time

hkt ** = such that the approximation error ,
2

kh
kk ceXX λ−

∧

≤− is close to zero1. If

{ }kk ss 21 , denotes the messages set, we send to the authorized recipient the chaotic signals:
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The scale factors 21 λλ and are constraint to satisfy:
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3. Since the authorized recipient receives the chaotic (11), he (or her) can proceed to perform the

decipher process. The observed messages 
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1 The time hkt ** =  basically depends on the initial conditions of both the Lorenz system approximation

and the state observer approximation. If both initial conditions coincide, 0* =t . If an acceptable

approximation error level is previously specified, say 310− , it is compulsory to perform numerical analisys in
order to compute the upper time bound of unacceptable misinformation risk.
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The next figure represents in a graphical form the proposed cipher/decipher system:

Fig. 1: Cipher/decipher scheme.

4 Numerical Implementation

In this section we test the cipher/decipher algorithm, proposed in the last section. We first designed two
numerical experiments: first, we made some numerical simulations to cipher and decipher two periodical
signals. We then implement the cipher/decipher mechanism in the programming language C, to cipher and
decipher two digital images, and this files were send via internet to another place, and then the original
images were recovered almost exactly.

4.1 Numerical simulation

We show by means a numerical simulation the cipher/decipher algorithm, proposed in the last section. We
implement the Lorenz's system and their state observer, in a discrete manner (see equations [(7), (8), (9) and
(10)]), with the initial conditions:

1.0,5.0,0.1,0.0,3.0,1 302010302010 ==−====
∧∧∧

xxxxxx

and the parameters:

001.0,0,20,28,10 ===== hkcrσ

Let )(sin 2
1 ts k =  and )cos(2 ts k = ; 204 ≤≤ t  be the messages to be cipher.

Under a numerical simulation environment (SIMNOM), we simulated the Lorenz's system, described in the
equations (7) and (8), and the cipher mechanism, described as follows:

)cos(100);(sin100 32
2

21 hkxmhkxm kkkk δδ +=+=

where { }caseotheranytohkif 0;2041 ≤≤=δ .

Analogous, we simulate the observer system (9) and (10), and estimate the originals signals using the
decipher mechanisms, as follows:

)100();100( 322211 kkkkkk xmsxms
∧∧∧∧

−=−=
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The next figures shows graphically the error behavior ( )32 ,ee (see [(7), (8), (9), and (10)]).

Fig. 2. The error e2. Fig. 3. The error e3.

note that from 8.3=t  seconds, the observation errors are the order of 310− .

In figures four and five, we see graphically the behavior of the first ciphered signal km1  (cipher system), with

their respective recovered signal (decipher system).

Fig. 4. Ciphered signal m1k. Fig. 5. Deciphered signal ks1

∧

.

The figures six and seven, shows in a graphically form the behavior of the second ciphered signal km2 , with

their respective recovered signal.

Fig. 6. Ciphered signal m2k. Fig. 7 Deciphered signal ks 2

∧

.
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4.2 Ciphering and deciphering information

To perform the Cipher and Decipher algorithm, we implement a prototype of the discretized Lorenz's system
and the corresponding state observer to probe the proposed cipher/decipher mechanism in the programming
language C. The tests were made ciphering and deciphering twice an image (a 24 bits BMP file),
simultaneously, using the second and the third state of Lorenz's system, respectively.

We deciphered the two ciphered images, using the operation:

{ }kkkkkk xsmxsm 3221 200,100 +=+=                  (12)

where ks  is the image vector, kx2 and kx3  are the second and the third Lorenz's system states [see (7) and

(8)]. The decipher process was made using the operation:

)200();100( 322211 kkkkkk xmsxms
∧∧

−=−=               (13)

where the states kx 2

∧

 and kx3

∧

 are the estimated states in the state observer proposed [see (9) and (10)].

Note 2: To be able to use this cipher/decipher schema, it is necessary that the sender and the receiver agree
the following information: the parameter values asigned to the cipher and the decipher systems

( )21 ,,,,,, λλσ hkbr . We recommend use a time sec4== kht ., to start the cipher mechanism.

Let us consider the next image:

Fig. 8. Image used to cipher and decipher.

First, we use the state kx2  with a scale factor of 100  to cipher the original image km1  [see (12)].

Simultaneously, we ciphered the same image using the state kx3 , with a scale factor of 200 ; in the figures

nine and ten, we show the ciphered images km2  and km3 , respectively [see (12)].



Suárez-Castañón et al., Chaotic-based methodology to cipher and decipher, EJS 4(1) 1-13 (2002)                 10

Fig. 9. The ciphered image using x2k.

Fig. 10. The ciphered image using x3k.

Next, we recovered the original information; figure eleven shows the deciphered message ks1  using the

estimated state kx 2

∧

[see (13)]. Simultaneously, we deciphered the ciphered image km2 , getting ks 2

∧

 using

the estimated state kx3

∧

 [see (13)], as you can see in figure twelve.

Fig. 11. The deciphered image using kx 2

∧

.
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Fig. 12. The deciphered image using kx3

∧

Figure Thirteen, shows two left corner fragments amplified of each ciphered images, km1  and km2 ,

respectively, that allow to observe that the two are different:

Fig. 13. We show a top left corner fragment amplified
of each ciphered image, it allows to see that both are different

Conclusions

This article presents a very simple methodology to cipher and decipher any kind of information, taking
advantage of the chaotic nature of the Lorenz system.

Basically, this algorithm can be resumed as follows:

The signal to be cipher is mixed with a chaotic system variable, this variable is choose in a way that it can be
reconstructed by means of one or more outputs of the sender chaotic system. The mechanism to recover the
signal, can be made almost immediately, depending on how far are the initial conditions, between the sender
circuit and the receiver or observer system. We recommend that the difference between the initial conditions
of the sender and the receiver be very small, and start the cipher process after at time 4≥t sec.

The decipher system is based on the use of a state observer, this can be considered as a pseudo-copy of the
original system, see equations (1) and (2). The convergence to zero of the observation errors, was made using
the second Lyapunov's method, to do this, first, we choose a Lyapunov's function, [see (4)], which is an
energy function of the Lorenz's system; after that we show that the derivative respect to time of V along the
trajectories generated by the observation errors is defined negative, therefore the observation errors is
exponentially convergent to zero.
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Finally, we developed an algorithm to cipher and decipher any kind of digital information, applying the
Lorenz system and their state observer, both expressed in their approximated discrete form, using the Runge-
Kutta method (see the discrete equations).
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