SADIO Electronic Journal of Informatics and

Operations Research

http://ww. dc. uba. ar/ sadi o/ ej s
vol. 3, no. 1, pp. 23-32 (2000)

Distributed Task Management by Means of Workflow Atoms

Federico Garcia® Roberto Moriyén®

'Escuela Técnica Superior de Informética
Universidad Auténoma de Madrid

28049 Madrid (Spain)

{Federico.Garcia, Roberto Moriyon}@ii.uam.es

Abstract

In this paper we describe Wf-ATOMS, a framework for the
specification and management of workflows, whose engine is
integrated in a multi user and distributed task management
system. The process models include features standard in other
workflow management systems, concerning the form in
which the activities forming the processes interact, and other
features usually managed by user-task management systems
that model the different activities available in interactive
applications. The conjunction of these two models provides
several benefits. On one hand, there is a simplification in the
development of workflow-based applications. On the other
hand, it allows the systematic development of training
applications for work teams that collaborate in the
accomplishment of distributed processes. In this paper we
describe both the framework from the point of view of the
specification of distributed processes and the underlying
architecture of the process management system. Wf-ATOMS
has been developed as an extension of ATOMS, a previous
framework for the management of user tasks in interactive
applications.

Keywords: Workflow, User-Task Models, Distributed Tasks,
Client/Server



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 24

1. Introduction

Workflows are sets of tasks that are executed either in a computer or through specific methods by process
entities, which can be people or computer applications. Tasks in a workflow must satisfy constraints that are
specified in the corresponding process models. Workflows represent procedural knowledge related to business
processes, administrative processes, etc., that take place in any type of organizations. Usually, the most
common activities that take place in organizations are suitable for their inclusion in a workflow. Depending
on the type of activities developed by the organization, the percentage of activities that can be included in a
workflow can be very high.

During the last years, many computer-based systems for the automatic control of workflows have appeared.
Several approaches for the modeling of workflows have been proposed, depending on the predominant
technique in their development (Alonso 1996). We shall point out those based on data base transactions
(Kamath 1995), events (Weske 1996) and Petri nets (Van der Aalst 1994) as the most relevant ones. Among
the benefits of using a workflow management system, the ability to automate very different aspects of the
activities that are usually accomplished in the organization is especially important. Some of these aspects are
assigning work to users, the information flow among them, the control of timing and priorities of pending
activities, and parts of the execution of those activities.

This paper introduces Wf-ATOMS, a framework for the specification and management of workflows whose
model management engine is integrated in a distributed multi-user task management system for interactive
applications. Wf-ATOMS manages tasks to be assigned to users. These tasks form a hierarchy of composed
and basic tasks. The basic ones can be task assignments to other users or simple interactive tasks like clicking
on the mouse on a button in the screen or moving a graphic component in a window with the mouse. As a
consequence of the granularity of basic tasks, Wf-ATOMS allows a bigger control of user activities than usual
workflow systems do. At the same time, the inclusion among them of the possibility to start remote tasks
simplifies the development of applications that must be highly integrated with the workflow management
system, like monitoring applications for different kinds of processes.

WTF-ATOMS offers a framework for the creation of workflows. This framework isolates the designer from
the management of different instances of workflows, and also from the assignment of pending tasks. Wf-
ATOMS allows the specification by means of a process editor of workflow processes formed by several
activities that are executed taking into account different temporal relations among them. The main
management engine takes care of task assignment. Moreover, Wf-ATOMS also allows the design of specific
applications that are part of some process or kind of processes, and are able to create and assign specific tasks
to some users or groups of them. The use of a highly dynamic underlying object system, ORE (Myers 1997),
based on the prototype-instance paradigm, is essential for the ability to build new prototypes of tasks with
different structures on the fly. The ability to use the Wf-ATOMS task framework is another factor that
simplifies the creation of applications that interact with the workflow system in a specific way.

The rest of this paper is organized as follows: first, we describe two different pieces of work that are related
to the Wf-ATOMS framework. After this, the framework for the specification of Distributed Process Models
is explained. The next section describes the overall architecture that is in charge of the management of the
distributed process in our system. Finally, some conclusions are given, together with comments on the
perspectives of future work.

2. Related Work

In this section we shall introduce two previous experiences of a completely different nature. First, we shall
give a brief description of the essential aspects of the Workflow Reference Model, defined by the Workflow
Management Coalition, WfMC. In the second part of the section some aspects of the InCJesFlow workflow
management system prototype will be explained. That prototype has been the basis for the InCesFlow
product, that is commercialized at international level by the first Spanish software corporation, Informatica El
Corte Inglés SA, IECISA. The InOesFlow prototype was developed as part of a join project between IECISA
and the Group of Interactive Tools and Applications, GHIA, from the Universidad Auténoma de Madrid.

The Workflow Management coalition was created in 1993 by several developers of workflow management
systems. Its main goal is to encourage the use of workflow technology through the creation of standards that
allow interoperability and connectivity among this kind of products. The standardization work has been
centered on the Workflow Reference Model, WfRM (Hollinsworth 1994). The main goal of the WfRM is the



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 25

specification of a general context for workflow systems, by identifying their characteristics, functions, and
interfaces.

Figure 1| shows a scheme of the main components of the WfRM; four of them are relevant for this work:
Workflow Enactment Service, Workflow Client Applications, Invoked applications, and Management and
Monitoring Tools. In the next paragraphs we shall describe these components briefly.

As shows, the main component of the WfRM is the Workflow Enactment Service, which is
enabled for the creation, management and execution of instances of workflow processes. The Workflow
Execution Service can include one or more Workflow Engines, which constitute the basic operation
environment. In case that several engines coexist, process executions are distributed among them according
with a specific partition logic (for example, depending on the type of workflow or the type of process).
Workflow Client Applications are the interface between the final user and the Workflow Execution Service,
through what usually is known as the Work List Manipulator. This manipulator allows users to select tasks, to
ask for details about the work to be accomplished, and to invoke applications needed in order to accomplish
that work, among other things. Invoked applications are a broad range of preexisting services from
heterogeneous environments that are integrated into the workflows. Automatic invocation activities and
applications that are able to interact at the workflow level, that are developed specifically to interoperate with
the Workflow Execution Service, are also included in this component. Finally, the Management and
Monitoring Tools allow the management of the whole Workflow Enactment Service from a single tool.

Figure 1: The WfMC’s Workflow Reference Model.

After this brief description of the WfRM, we shall describe the essential aspects of the prototype of
Workflow Management System developed by the GHIA group as part of the design of InOesFlow. This work
has been conducted in the context of the continued collaboration between the IECISA R+D department and
the GHIA group since 1995. This collaboration continues nowadays with the participation in join R+D
projects that include areas such as the development of last generation techniques for the management of Java
distributed processes (Apolo project) and the design and development of systems for the management and
resolution of problems based on constraints and their integration in high level tools that support negotiation
processes (Logap project).

The InCJesFlow prototype (Alfonseca 1997) uses a mixed approach based on the technology of application
interface modeling based on user-task models, together with a classical client-server communication
mechanism. This communication mechanism includes the use of transactions on a centralized relational
database that supports the persistency of all the objects handled by the system. Using user task modeling
techniques has some advantages with respect to other workflow modeling techniques. On one hand, it allows
a representation of the processes that form the workflow in terms that are close to the ones used by their



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 26

protagonists; this simplifies their design and modification, and allows a bigger collaboration of the users in
both activities. On the other hand, the representation of the information flow is simpler to comprehend and to
handle, since the information appears in the form of data associated to objects (usually the representation of
activities being accomplished). This allows an important simplification with respect to other approaches, like
the ones based on Petri nets, where the data themselves carry the responsibility for the evolution of the
system. Although the InCesFlow prototype models the activities that make up a process model in a way that is
similar to the one used by user tasks management systems, the original framework did not include enough
inner functionality as to link it with a management system of this type. Although the approach used in this
prototype allowed the accomplishment of its requirements, it has limitations that can not be overcome with
respect to the possibility of keeping track of the activities performed by the users in order to offer them help,
automation or other additional services. In the next sections we describe the steps we have given in this
direction.

3. Distributed Process Models

Wf-ATOMS offers an object-oriented framework for the specification of workflow models. These models
involve the different organization components. This framework is based on a prototype/instance inheritance
paradigm. By instantiating this framework, the existing relationships between the different sub processes that
constitute a workflow model are specified. These framework instances are named Distributed Process
Models. As will be seen in the following section, the run-time management environment of the system
interprets the Distributed Process Models to offer automatic support for process coordination and process
assignment between the different components of the workflow. As a consequence, this framework isolates the
designer both from the management of the different workflow active instances and from the assignment of the
pending processes to the users responsible for carrying them out.

The Distributed Process Models in the Wf-ATOMS environment are generalizations of the Task Model
concept. Task Models are increasingly used in the Human-Computer Interaction (HCI) research field (Szekely
1993). Task Models are descriptions, usually declarative, of the set of tasks a user can accomplish by means of
a particular interactive application. In our case, the Task Models we are focussing on are hierarchical Task
Models. These models decompose abstract user tasks in terms of simpler ones. This process is repeated until a
process can be no longer decomposed; that is, until the process is an action directly related with an user
interaction in the application interface. A detailed dissertation on the advantages and disadvantages for using
hierarchic user task models in the Human-Computer Interaction field can be found in (Koshie 1994). In the
generalization we are describing in this paper, we allow not only to specify local Task Models, as in the
current models, but also we allow specify relationships between different software and hardware
environments within a client/server distributed system. Our aim is to allow the specification of more complex
behaviors, including the ones present in workflows, in a similar way as they are modeled in graphic user
interfaces.

The framework incorporated into ATOMS (Rodriguez 1997, Garcia 1998b), Advanced Task-Oriented
Management System, a mono-user and non-distributed user-task management system, has been adapted for
the specification of multi-user and distributed tasks in the Wf-ATOMS system. Next, we will explain in detail
the structure of ATOMS Task Models. After that, we will explain the improvements we have made to those
models so as to reuse the ATOMS’ framework design, adapting it to a multi-user and distributed environment.

ATOMS Task Models are hierarchical representations that indicate which sub processes have to be carried
out to complete a complex process. These models are specified by means of a declarative specification
language. To specify these hierarchical relationships, the Task Models are compelled of a set of processes,
with different abstraction levels, and a set of rules that hierarchically relate those tasks with each other. The
rules not only define the hierarchical decomposition, but also temporal and contextual constraints among the
processes and sub processes, as will be explained later in this section.

There are two types of tasks a Task Model has to define: Atomic Tasks and Composed Tasks. The first type
models those interactions the user can directly perform on the application user interface; that is, those actions
that can not be decomposed into simpler ones. In order to specify this type of tasks, the ATOMS framework
provides designers with a set of Atomic Task prototypes. These prototypes allow to easily define Task Models
by an instantiation and a parameterization procedure of the instances just created. Within the set of atomic
prototypes the framework provides, we can cite AtomicTask, WidgetButtonTask, WidgetListTask,
WidgetRadioPanelTask, WidgetCheckPanelTask, and so on.



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 27

Apart from atomic tasks, the second type of tasks models those abstract tasks the users have in mind when
they complete some set of actions. To specify these composed tasks, ATOMS provides the ComposedTask
prototype. Both types of tasks, atomic and composed ones, can have contextual information associated, in the
form of parameters.

ATOMS Task Models also incorporate the inheritance concept. This inheritance is based on the
prototype/instance paradigm. In this environment, every task can be seen also as a prototype for the definition
of new instances. For example, the WidgetButtonTask can be used as a prototype to instantiate those tasks
associated with pressing a button and, at the same time, it is an instance of the AtomicTask prototype. By
means of this instantiation procedure, the creation and management of task repositories is facilitated. Thus, it
is encouraged the model reuse and designers are helped during the task modeling phase.

ATOMS’ Task Models, in addition to define the user tasks, define also the rules hierarchically relating those
tasks to each other. Each rule indicates the way a particular composed task can be decomposed as a certain set
of subtasks, atomic or composed ones. The ATOMS framework provides three types of rule prototypes:
SequenceRule, AndRule and XorRule. The designer chooses the prototype that suits the best to her/his needs
and instantiates it, according to the temporal relationship between the execution of the subtasks. Thus, in the
rule instances of the SequenceRule prototype, a given subtask will be blocked until every previous subtask has
finished. In the case of rule instances of the AndRule prototype, the execution of each subtask is independent
from the execution of the rest of subtasks, and all the subtasks in the rule have to be performed so as to finish
the process they belong to. Finally, for instances of the XorRule prototype, the ending of any subtask implies
the ending of the task it belongs to.

Moreover, each rule includes other types of information, such as:

»  The parameter flow descriptions between the different subtasks of a task. This description determines

how the parameter values are obtained and how these values are propagated among the task hierarchy.
A parameter flow description is encapsulated in an instance of a ProcessParameter object. The
framework provides a library of standard ProcessParameter instances that can be extended by Task
Model designers.

«  Which preconditions and post conditions, if any, should hold before and after the execution of each
subtask. Similarly, the framework provides designers with a library of instances of PreCondition and
PostCondition prototypes, which can be customized to the particular designer needs before being
associated to rule instances.

Similarly to the case of tasks, the specification of rules can also take advantage of the inheritance concept to
obtain a higher level of reuse of partial models. However, the use of rule inheritance goes a little further
beyond the reuse of the initial prototypes facilitated by the framework. The use of rule inheritance allows the
designers to specify a certain relationship between tasks and, afterwards and depending on the particular
context for which the rule will be used, turn the conditions imposed on the rule either more rigid or more
flexible. Once this specialization has been made, there are two choices for using the new rule instance and its
prototype. First, the new rule can completely replace the old one. And, second, both rules may coexist, the old
one being applied only when the new one can not be applied.

We have described the architecture of the ATOMS framework, including the different prototypes and
constraints provided. However, since Task Models are declarative specifications of tasks, this framework has
a significant difference with respect to other ones. Most frameworks are procedural, that is, the behavior of
the instances of the different classes/prototypes is guided by the methods associated with them. In contrast,
the ATOMS framework is declarative, that is, the functionality of the instances is determined by the values of
their attributes at execution time. All the methods of the prototypes facilitated by the system are highly
parameterized methods that, at execution time and depending on the values adopted by the attributes of each
instance, make the instances to behave in one way or another.

The Wf-ATOMS framework extends the one in ATOMS in the sense that, while ATOMS allows to manage
Task Models referring only to local tasks and involving a unique application, Wf-ATOMS’ models allow the
use of Distributed Process Models, that represent multi user distributed processes within a client/server
platform.

Up to now, we have described the framework incorporated in ATOMS for the definition of Task Models.
The use of a prototype/instance based inheritance model has highly facilitated the work to extend the ATOMS
framework to the Wf-ATOMS framework. In this way, the prototypes provided by the Wf-ATOMS
framework are the same that the ones described for the ATOMS framework. The main difference is that each
task has a boolean attribute associated, Local, that indicates whether that task is local to the application or it
has to be performed by using another different application, possibly in a remote system. In case a task is not



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 28

tagged as Local, there are another two attributes, Application and UserOrGroup, that identify which user or
group of users is responsible for carrying out the task and which Client Application is to be used. A big part of
the effort for the extension of the ATOMS system to the WF-ATOMS system has been devoted to the
extension of the execution environment to a distributed client/server model, as will be explained in the
following section.

4. Architecture

This section details the architecture used for the execution environment to manage multi user and
distributed tasks. The Distributed Process Models allows to specify workflows that are coordinated by the
run-time environment we introduce in this section. As it has been already commented, the architecture of the
system is based on a client/server environment. First, we will explain the modules included in the server of
the architecture and the functions each one fulfills. After that, the structure of the client systems will be
described. In particular, the modules that compose each Client Application will be shown. Finally, we will
describe the communication protocol between the clients and the server for the correct operation of the
environment.

4.1. The Server

As shown in [Figure 2, the server incorporates the functionality for the coordination and process assignment
services.

Clients

Figure 2: Server Architecture.

The server is in charge of coordinating the accomplishment of the processes by the different clients of the
system, as well as the assignment of the pending processes to the clients connected to the server at each
moment. The core of the system is the Processes Parsing Engine, that uses the information in the rest of
components to coordinate the accomplishment of the processes.

For the assignment of processes to the different clients connected during the accomplishment of the
workflows, the Processes Assignment Module makes use of the Clients, User and Groups database. This
database contains static information referring to users and groups, and dynamic information such as, for
example, which client systems are connected at each moment.

The coordination of processes carried out by the clients involves three main modules: the Distributed
Process Models, the Active Processes and Historic database and the Process Parsing Engine. The rest of this
section is devoted to explain the functionality of these modules.

The Distributed Process Models are formal representations of the processes that can be accomplished.
These specifications model the parts of the organization workflows susceptible of being accomplished via
software. They have been already described in the previous section.

The Active Processes and Historic represent the different activities that are being carrying out (Active
Processes), as well as those processes that have been carried out in the past (processes Historic). For the
Active Processes, the database includes specific information related to each process, such as its process
identification, its execution state, the values for its associated parameters, which client is accomplishing it or
must accomplish it, which client should be notified at the end of the process, and so on. As it happens with



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 29

user tasks in the user-interface field, the main objective of the Active Processes and Historic database is to
allow Added-Value Tools to analyze and reason about some features of the accomplishment of the processes.
In this case, for example, to optimize the performance of processes or to detect repetitive patterns so as to
study and automate them.

Each time a client accomplishes the process it has been assigned to, it notifies the fact to the Process
Parsing Engine in the server. This notification includes all the relevant information dealing with the
accomplished process and its context. When this module receives the information of the process accomplished
by the client, using the Active Processes database and the Distributed Process Model in the server, it
coordinates the processes to be accomplished by the clients; that is, it determines the set of pending processes.
Afterwards, it requests the Processes Assignment module to assign the new pending processes to appropriate
clients. Furthermore, when it is necessary, it informs the clients that are blocked waiting a specific process to
be finished to continue their activities. Finally, the Process Parsing Engine is also in charge of updating the
contents of the Active Processes and Historic database to reflect changes in the processes.

4.2. The Clients

The modules in each client system of the Wf-ATOMS environment are represented in [Figure 3. As can be
seen there, each client incorporates a Process Manager and a set of Client Applications. In this section we
will explain in detail the paper that fulfils each component and, in the case of the Client Applications, the
different modules that constitute each one.

Server

Figure 3: A Client Architecture.

Each client includes a Process Manager. This module is in charge of relating, within each client system, the
processes the client has been assigned to perform with the applications that should be used to accomplish
them. The Process Manager is in direct communication with the Process Assignment module in the server,
which is entrusted with assigning the pending processes to be accomplished. Once the Process Manager in
the client knows the task the client has been assigned to perform, it opens the application that is adequate for
executing the process.

In each client, there is a set of Client Applications. Each Client Application is an application for which all or
part of its functionality has been modeled in the form of Distributed Process Models. These models are
accessible via the server or the client to allow external systems to reason about them. As it happens with the
Distributed Process Models in the clients, Client Applications are executed by the client systems, but they do
not need to be found physically in the client. At the same time, each Client Application incorporates a
Distributed Process Model, an Active Processes and Historic database and a Process Parsing Engine.

As it has been mentioned, the Distributed Process Models are formal representations of hierarchic
processes. As we detailed in Section[, the Distributed Process Models represent the tasks that can be carried
out in the associated application and relate those tasks with the execution of other tasks in other applications,
probably located in different client systems. When, as part of a process being carried out in a given Client
Application, another external process has to be accomplished, then the Client Application, through the
Process Manager, informs of the situation to the server. Afterwards, the server is in charge of assigning the
performance of the task to an available client. From then on, the server coordinates the execution of the



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 30

external process and informs eventually the Client Application who requested the performance of the process
of its end.

With respect to the Active Processes and Historic database, it stores, in a similar way than its homonymous
in the server, those processes that are being accomplished or that have already been performed in the past.
This representation only details those processes that are being accomplished directly in the Client Application
associated with the Active Processes and Historic database. In contrast, those parts of processes that are being
remotely accomplished are treated with the greatest possible degree of abstraction, since they are not directly
related to that Client Application. Similarly, Added-Value Tools can interact with this database so as to
provide high-level services for free to the user-interface. These services may include task automation (Zeiliger
1997) and/or user-task oriented help (Garcia 1998a).

Finally, each Client Application incorporates a Process Parsing Engine. We have seen that the role of the
Process Parsing Engine in the server was to analyze the information coming from the clients to determine the
states of the processes from the information in the Active Processes database and the Distributed Process
Models in the server. In the case of the Process Parsing Engine in the clients, it analyzes the information
coming from the interactions of the users with the Client Applications, and uses the Distributed Process
Model and the Active Processes database to determine the accomplishment state of the processes assigned to
the client.

4.3. Client/Server Communication Protocol

In this subsection we describe the existing communication protocol within Wf-ATOMS. This protocol
allows the communication between the server and the different clients, making possible the process
coordination and the process assignment roles of the server. As can be seen in[Figure 4, the protocol is
basically composed by the four communications represented by arrows (1) to (4).

Figure 4: Communication Protocol

Process Assignation (2)

In order to begin the accomplishment of a process, a request for starting such a process has to be sent to the
server, as indicated by (1). This request will normally be produced by the client used by the supervisor of the
workgroup, but it may be sent by any other client, as will be explained later. Once such a request is received,
the server will determine which processes have to be carried out, and it will assign those pending processes to
appropriate clients so as to accomplish them (2).

When a Client Application is carrying out a process, it may imply the accomplishment of sub processes on
behalf of other clients or other applications in the same machine. In case a process needs a particular sub
process to be executed by other application or other client, the active application (the one performing the
process) will send a communication of type (1) to the server. This (1)-type communication is similar to the
one used by workgroup supervisors, but it includes some additional information. Thus, depending on the type
of sequencing indicated by the rules in the Distributed Process Model of the active application, the
application may have to wait, or it may not, until the process requested will finish. Then, this kind of (1)-type
communication differs from the one explained in the previous paragraph in the fact that the server will inform
of the ending of a process to the Process Manager in the client who requested its accomplishment. This
advice, represented in[Figure 4 by a (4)-type communication, will be later routed from the Process Manager
to the actual Client Application who requested the remote process accomplishment. Afterwards, that remote
process will be considered as finished and, in case the Client Application were waiting for its ending, it would
continue its execution.

Once a Client Application has finished the accomplishment of a process that has been assigned to, it will
inform the server of the fact by using a (3)-type communication. Then, the server is in charge of determining



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 31

if any Client Application is waiting for the ending of that process or there is not. If the affirmative case, the
server will inform that Client Application of the fact that the process has already finished.

As a resume of this section, processes are started by the server as a result of a client request. This request
may come from a workgroup supervisor or it may come implicit by a process being executed in a Client
Application that starts the execution of a remote process. Once a process is started, both the coordination and
the assignment of the different processes involved are carried out by the Process Managers of the clients and
the Process Assignment and the Process Parsing Engine modules of the server.

5. Conclussions and Future Work

In this paper we have described a framework for the representation of distributed tasks. These tasks are a
generalization of user tasks, used in the field of user interface modeling, and they have the functionality of
workflow models. The Distributed Process Models are interpreted in an environment based on a client/server
architecture.

The main advantage provided by the modeling of processes by means of these techniques is the possibility
to model the different processes as a whole, including the way in which each single activity should be
accomplished by means of the appropriate applications. This allows external systems to reason about the
models and to offer added-value services. For example, it is possible to semi-automatically generate tutoring
systems about the execution of workflows as it is possible to do it for the use of interactive applications.

In the next future we are planning to modify the structure of the client systems to incorporate a unique
Process Parsing Engine, an unique Processes Model, and an unique data base of Active Processes and
Historic for each client machine. This will result in a substantial increment in efficiency, due to the avoidance
of unnecessary replications, and to the fact that a part of the communication flow between the clients and the
server can be avoided.

CACTUS (Garcia 1999, Garcia 2000), Creating Application Courses about Tasks Using Scenarios, a tool
for the semi-automatic generation of tutoring courses about the accomplishment of user tasks in interactive
applications, is part of our current work along the same line of the one presented in this paper. This tool is
also based on the ATOMS task management system; it provides an interactive interface that includes
techniques of programming by demonstration in order to specify the contents of the courses. We are planning
to adapt CACTUS for the generation of tutors about the accomplishment of interactive processes involved in
workflow processes. This environment will allow the creation in a semi-automatic way of courses for working
teams to learn and practice how to work together in some activity using a client/server based environment.

6. Acknoledgements

This work has been partially supported by the Plan National de Investigacion, projects TIC96-0723-C02-
01/02 and TEL97-0306.



F. Garcia et al., Distr. Task Management by Means of Workflow Atoms, EJS 3(1) 23-32 (2000) 32

References

Alfonseca, A., Contreras, J., Moriyén, R. and San José, P. “Un Sistema de Gestién de Flujos de Trabajo
basado en una Jerarquia de Objetos de Gestion Persistentes”. JIDBD’97. Univ. Carlos |11 de Madrid, 1997.

Alonso, G., Agrawal, A., ElI Abbadi, A., Kamath, M., Giinthér, R. and Mohan, C. “Advanced Transaction
Models in Workflow Contexts”. In Proceedings of the 12th International Conference on Data Engineering,
Nueva Orleans, Luisiana, USA, Febrero 1996.

Garcia, F., Contreras, J., Rodriguez, P. and Moriydn, R. “Help generation for task based applications with
HATS”. In Proceedings EHCI'98, Creta (Greece), September 1998.

Garcia, F., Rodriguez, P., Contreras, J., and Moriydn, R. “Gestién de Tareas de Usuario en ATOMS”. IV
Jornadas de Tecnologia de Objetos, JJOO'98, Bilbao, Octubre 1998.

Garcia, F., “Towards the Generation of Tutorial Courses for Applications”. 5th ERCIM Conference on User-
Interfaces for All. Dagstuhl (Germany), October 1999.

Garcia, F., “CACTUS: Automated Tutorial Course Generation for Software Applications”. Accepted for
publication in ACM Conference on Intelligent User Interfaces, 1UI12000, New Orleans (USA), January
2000.

Hollinsworth, D.: “The Workflow Reference Model”. Technical Report TC00-1003. Workflow Management
Coalition, December 1994.|http://www.alal.ed.ac.uk/WTMC/DOCS/refmodel/rmv1-16.html}

Kamath, M., Alonso, G., Glnthor, G. and Mohan, C. “Providing High Availability in Very Large Workflow
Management Systems”. Proceedings of the Fifth International Conference on Extending Database
Technology (EDBT’96), Avignon, Francia, Marzo 1996. También disponible como IBM Research Report
RJ9967, IBM Almaden Research Center, July 1995.

Kosbie, D.S. and Myers, B.A. “Extending Programming by Demonstration with Hierarchical Event
Histories”. In Proceedings EWHCI'94, St. Petersburg, Russia, August 1994. East-West Human Computer
Interaction.

Myers, B.A., McDaniel, R.G., Miller, R.C, Ferrency, A.S., Faulring, A., Kyle, B.D., Mickish, A.,
Klimovitski, A. and Doane, P. “The AMULET Environment: New Models for Effective User Interface
Software Development”. IEEE Transactions on Software Engineering, VVol. 23, no. 6. June, 1997. pp. 347-
365.

Rodriguez, P., Garcia, F., Contreras, J. and Moriyon, R. “Parsing Techniques for User-Task Recognition”. 5th
International Workshop on Advances in Functional Modeling of Complex Technical Systems, Paris
(France), July 1997.

Szekely, P., Luo, P. and Neches, R. “Beyond Interface Builders: Model-Based Interface Tools”. Proceedings
of INTERCHI'93, 1993, pp. 383-390.

Van der Aalst, W.M.P. , Van Hee, K.M. and Houben, G.J. “Modeling Workflow Management Systems With
High-Level Petri Nets”. In G. De Michelis, C. Ellis, and G. Memmi, editors, Proceedings of the second
Workshop on Computer-Supported Cooperative Work, Petri nets and related formalisms, pages 31--50,
1994.

Weske, M. “Event-Based Modeling and Analysis of Distributed Workflow Executions”. Fachbericht
Angewandte Mathematik und Informatik 16/96-1, Universitat Minster, 1996.

Zeiliger, R. and Kosbie, D. “Automating Tasks for Groups of Users: A System-Wide “Epiphyte” Approach,
in INTERACT’97 (ed. S. Howard, J. Hammond and G. Lyndgaard), Chapman & Hall Press, IFIP, Sydney,
1997.


http://www.aiai.ed.ac.uk/WfMC/DOCS/refmodel/rmv1-16.html

