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Abstract 

A design and development tool to achieve artificial neural networks (ANN) implemented 
in a Field Programmable Gate Array (FPGA), is presented in this article. Its main 
components and functionality are thoroughly described. This tool, called NNGen, allows 
constructing digital ANN, which are easily programmable selecting different parameters. 
The output of such programming task is directly VHDL code to be ported to, in principle, 
any chip of the mentioned kind. A case study of a multilayer perceptron applied to 
weather forecast that was fully designed with NNGen, is also analyzed to obtain some 
conclusions. 
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ANN on a chip: an introduction 
 

 
Artificial neural networks (ANN) can be classified into two groups based on the degree of parallelism 
obtained in the diverse developments. Developments with high degree of parallelism implement the 
architecture of the network with all their neuronal interconnections [6]. These developments are limited to 
small networks consisting generally of one hidden layer with less than 10 neurons.   

On the other hand, developments of low (or null) level of parallelism completely implement the 
functionality of a single neuron plus a control unit. That unit successively feeds the neuron with sets of 
weights and input values to obtain a valid output result. This last alternative allows implementing time 
multiplexed hardware circuits with a high advantage in area without loosing much performance.   

Time Multiplexed neural networks are commercially available whereas other designs, like replication of 
various neurons, are being studied by many research and academic groups.   

The two main categories consist of neurocomputers based on standard integrated circuits and ASIC. The 
first ones are accelerator boards that optimize the speed of calculation in conventional computers (PC like or 
workstation).  In these cases, where standard components are used, the designers can be concentrated totally 
in the development of a particular technology. In the second ones, several alternatives and technologies of 
implementation can be chosen for the neuronal accomplishment of chips, like digital, analog or hybrid 
neurochips.   

Direct implementation in circuits generally alters the operation of the original processing elements 
(analyzed or simulated).  It is due to the limitation in precision.  The influence of this limited precision is of 
great importance for the correct operation of the original paradigm. Because of this, many designers have 
dedicated much time to study these topics.  In order to obtain implementations on great scale, several 
neurochips must be interconnected to create systems of greater complexity, with advanced communication 
protocols. 

Proposed architecture for digital ANN 

In the present approach an architecture of a Digital ANN is proposed. It has four main functional components: 
Data memory, weights memory, neuron module and control unit. All these components have a generic 
orthogonal structure in order to facilitate automatic generation from specific parameters. Figure 1 shows ANN 
building block with the interconnection buses and control signals [5]. 
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Fig. 1. Developed ANN building blocks 

 
In a particular ANN design all of its components are generated with specific size, depending on two types of 
parameters: topological and architectonic.  The first ones (i.e. number of inputs and number of hidden 
neurons) will determine the size of the memories, the neuron processing time and the microprogram size. The 
second ones (i.e. word size in bits and circuit granularity) will determine the precision of the results and the 
final ANN performance. This parameter definition has influence in the final circuit size, so the designer must 
take care of this because the programmable devices (FPGA, CPLD) – the physical support of the ANN, is 
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space limited. A commonly used metric hint compare areas of different ANN is the number of physical 
registers in the circuit. Equation 1 shows this metric for an ANN with n inputs, m hidden neurons, word size 
of w bits and circuit segmentation granularity β. 
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The proposed architecture is programmed according two internal sub-parameters calculated from the 

parameters described previously. Once this step is fulfilled, a microprogram should be written to control the 
computations of the particular design. This microprogram consist in a variable number of micoinstructions 
depending on ANN topology. Each microinstruction configures all datapath signals for each clock cycle, 
whereas the entire microprogram, cyclically executed, allows obtaining subsequent decisions of the network. 
 

Parameter Definition 

The first parameter to consider is the number of cells of the Data Memory (L), according to: 
 

L = max (N – 1) (2) 

 
where N is the number of neurons in two contiguous level. This Data Memory must always be able to store 

the outputs of the just computed level (data) plus the results of computing each neuron in the present level. 
The second parameter is the size of the weight’s memory (Swm), which shall store all of the ANN’s weights. 

 
Example I: a classical feedforward ANN of nine neurons in the hidden layers and four inputs and three 

outputs is described according Fig. 2. 
Microprogram creation: 

From two levels of abstraction, a software tool (assembler) was developed to analyze the precedence 
relationships in the computations needed by the network under design. The higher level of abstraction 
generically describes which kind of neural network is under development. The present types supported by 
NNGen are Multilayer Perceptrons (MLP) and Hopfield ANN, synchronic and asynchronic [7]. 
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Fig. 2. Parameters definition of an ANN 
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The feedforward ANN of Fig. 2 is defined as: 

Net <name> Description 
type feedforward 
Input : 4 
Output : 3 
Hidden : 4 , 5 

End <name> 
 

Example II: a given Hopfield ANN is defined as: 

 

 

Net <name> Description 

type sync Hopfield 

Nodes : 3 

End <name> 
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The synchronic or asynchronic feature of the Hopfield ANN is achieved by the microprogram taking into 

account that the neurons are all updated in each clock cycle or sequentially, respectively. This high level 
description only allowed the generation of simple and remarkably regular neural nets, but did not permit to 
outline more specific details about the neurons interaction of a particular design. Then a lower level of 
description was needed, in which neurons dependencies were explicitly stated. This was achieved by 
programming in the form shown in Example III.  

 
Example III: a more detailed description of a feedforward ANN with 4 inputs, 2 outputs and a hidden layer 

of 3 neurons, in a lower level of abstraction 
 

Net <name> Description 
  type Feedforward 
    Nodes: A,B,C,D,E,F,G,H,I 
    Weights: w1..w18 
    Input Nodes: A,B,C,D 
    Output Nodes : H,I 
  Relation 
    E = A*w1 + B*w2 + C*w3 + D*w4 
    F = A*w5 + B*w6 + C*w7 + D*w8 
    G = A*w9 + B*w10 + C*w11 + D*w12 
    H = E*w13 + F*w14 + G*w15 
    I =  E*w16 + F*w17 + G*w18 
  End Relation 
End <name> 
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From this description, the assembler can settle down the introduced parameters L (equation (8)) and Swm 

that for this example will be 6 and 18 cells, respectively. The microprogram generation is based on these 
specifications, which maps into a set of microinstructions that the control unit successively stores in the 
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corresponding register. This register has 2*L bits, coding one among the four possible operations for each cell 
of the data/results row. They are presented in table I. 

 
The resulting microprogram of Example VI is partially shown in table II. The microprogram puts in the 

data row the resulting values of computing each neuron, in a position such that this value operates with the 
corresponding weight when going out of the row. To achieve this, weights are stored in a circular buffer of 
ROM memory. In this way, the ANN behaves like a systolic system, multiplying in each clock cycle a value 
from the data/results row and a corresponding synaptic weight. This product (a partial result) is stored until 
every input to each neuron is processed. Once the output of a processed neuron is obtained, it is crossed 
through the activation function and the result is stored in the data row, in the cell pointed by the current 
microinstruction. This procedure is illustrated in Fig. 3. 

 

Table 1. microinstructions of the microprogram 

Rotation (C) The cell receives the row output value  
No operation (N) The cell is not modified  
Shift (S) The cell receives the value from its prior one (left)  
Datum load (L) The cell is loaded with the value from the activation 

function or the input data  
 

Table 2. part of the microprogram of Example VI 

Cycle µicroinst. Row state Operation Comments 
0 NNNNNL _ _ _ _ _ A _ initial data load 
1 NNNNLN _ _ _ _ B A _  
2 NNNLNN _ _ _ C B A _  
3 NNLNNN _ _ D C B A _  
4 NNCSSS _ _ A D C B Acc = A * w1 A is recycled 
5 NNCSSS _ _ B A D C Acc += B * w2 B is recycled 
6 NNCSSS _ _ C B A D Acc += C * w3 C is recycled 
7 NLCSSS _ E D C B A E = Acc += D * w4 D is recycled and E is loaded 
 ........ ........ ........  

11 SLSSSS _ F E D C B F = Acc += A * w4 shift and F is loaded 
12 SSSSSS _ _ F E D C computation of G global shift 

 ........ ........ ........  
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Fig. 3. Data flow in the ANN 
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Description of NNGen 

A complete set of tools -NNGen- was developed to assist the user in the ANN generation and test. NNGen 
helps the user in the creation and handling of different projects in order to maintain diverse designs of MLPs 
and Hopfield ANNs [8]. For each project, it is possible to specify the topographic and physical parameters to 
personalize the circuit, generate the control program, simulate the microprogram operation and, finally, 
generate VHDL source code for all the components. Figure 4 shows the main window with all the necessary 
functionality to develop a project. 

MLP topographic parameters are three: number of inputs, hidden layer dimension  (number of layers and 
neurons per layer) and number of outputs. These parameters allow the system to generate the control 
microprogram to drive all datapath signals in each clock cycle. 

Physical parameters allow the system to adjust all datapath-operators size and to generate data and weight 
memories (RAM and ROM respectively). The parameters are: a) Weights file, necessary for ‘off-line’ 
training; b) Word-size, to determinate internal data size and c) Working precision for current application, in 
order to establish the Arithmetic to use. For example, the arithmetic showed in figure 5, (4,4) set the datapath 
to work in 8-bit with eeee.dddd format. 

 
 

 

Fig. 4. NNGen tool main window 

 
For a generated microprogram, simulation tool allows the user to make logic simulations to test the correct 

datapath operation. The signals synchronization to handle the systolic datapath is highly complex. For this 
reason, the simulator allows following the evolution of the calculations in all the points during each clock 
cycle. Figure 6 shows the microprogram simulation-tool used to test a MLP with 4 inputs and 2 hidden 
neurons. 
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Fig. 5. Parameter required for ANN generation 

 

 

Fig. 6. Logic simulator to test the microprogram funcionality 

Temperature forecast: a case study 

One of the main problems to solve in temperature forecasting is to achieve the ability of prediction of time 
series. The ANN approach seems attractive in this task from several points of view [1], [2]. Effectively, there 
are various ANN architectures, capable to learn the evolutive features of temporal series, and by so doing, to 
predict future states of these series from past and present information. Perhaps the most used ANN 
architecture for this kind of prediction is the MLP, like the one in Fig. 7 [3].  
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Fig. 7. The multilayer perceptron (MLP) 

 
The input vector for such MLP will consist of a certain amount p of past samples of the temporal series, of 

the form: 
 

x =[x(n-1), x(n-2),.., x(n-p)] (3) 

 

The net output will be a variable [1]: 
 

y(n) = ϕ[x(n)] (4) 

 

If ϕ is static, then (3) and (4) are only applicable to stationary temporal series. This is a drawback for 
weather forecasting. Then, a reasonable choice is to use some kind of memory to store relevant temporal 
information, like in Elman neural networks or FIR (Finite Impulse Response) neural networks. The first uses 
a positive feedback through memory units called “context memory”. This memory allows adding past 
behaviors of the net to the learning process. On the other hand, in FIR neural networks, FIR filters replace the 
primary synapses weights, also with the added feature of temporal recalling. This change yields a vectorial 
and temporal extension to the MLP. Of course depending on the application, if the prediction horizon is small 
enough, temporal series may be considered as stationary. However, measuring in time units this prediction 
horizon for weather forecast applications, is still a matter of research and experimental studies. 

Putting NNGen to work 

A temporal series was used to train four topologies of MLP as a testbed. Figure 8-a) shows original series 
consistent of 2838 samples of environment temperature in a lapse of 47 hours 18 minutes in intervals of 1 
minute. Figure 8-b), shows the same series normalized into range [-5º..5º] (SERIE I). 

 

  



Tosini & Acosta -NNGen: tool for Artificial Neural Networks on a chip, EJS 6 (1) 42-52 (2004)                 50 

-3

-2

-1

0

1

2

3

4

Muestras

G
ra

do
s 

ce
nt

ig
ra

do
s 

[-5
..5

]

 

(a)                                                                            (b) 

Fig. 8. (a) Original temporal series with temperatures from 13:34:40-15/12/2001 to 12:51:40-17/12/2001. 
(b) Normalized temporal series in range [-5º..5º] 

 
The implemented MLPs consisted of 4 inputs and 5, 4, 3 y 2 neurons in the hidden layer respectively. They 

were trained [4] using the first 1500 samples of SERIES I. 
Hardware simulation for the four cases are showed in table III, where the minimum, maximum and average 

errors are appraised (generated minus expected value).  
 
 

Table 3. Hardware simulation of cases 

Error Case Topology 
Inputs/hidden 

Probe stage 
Maximun Minimun Average 

 
I 

 
4 / 5 

SERIE I 
2838 samples 

11 
0,85º 

0 
0º 

1,54 
0,12º 

 
II 

 
4 / 4 

SERIE I 
2838 samples 

8 
0,625º 

0 
0º 

2,47 
0,19º 

 
III 

 
4 / 3 

SERIE I 
2838 samples 

17 
1,32º 

0 
0º 

4,26 
0,33º 

 
IV 

 
4 / 2 

SERIE I 
2838 samples 

16 
1,25º 

0 
0º 

6,59 
0,51º 

 

Case I (5 hidden neurons) is the best solution, with an average error of 0,12º. Case II (4 hidden neurons) is 
also a good solution as regards as error, with the added advantage of a lower cost in area than the previous 
case. Figure 9 shows hardware simulation for cases I and II, while figure 10 shows cases III and IV, all of 
them using the hardware simulation tool of NNGen. 
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a) Case I                                            b) Case II 

Fig. 9. Simulation for cases I and II 

 

   

c) Case III                                         d) Case IV 

Fig. 10. Simulation for cases.III and IV 

Conclusions 

Hardware architecture for digital ANN design was developed with the main features of an easy 
configuration from a small set of parameters, a pipelined datapath and a microprogramed control unit. These 
characteristics have two great advantages: allowing resources reusability and achieving high speeds of 
operation. 

In order to construct the ANN a set of software tools (NNGen) was developed to offers to the user a simple 
and friendly interface for design and test purposes. Among the outstanding features of such tool are generic 
VHDL generation, hardware simulation capabilities, and dynamic re-configuration.  

In this article, this tool was employed to develop different topologies of MLP which were trained and 
probed with several temporal series of temperatures with depreciable prediction errors. 
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Future works includes development of algorithms for automatic generation of other paradigms such as 
Hopfield networks, Radial Basis Function networks and K-Nearest Neighbor (KNN); and on line MLP 
training. 
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