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Abstract

Active databases (ADBs) are databases that include active compo-

nents or agents that can execute actions. The rise of active databases

in the picture of software development has a great impact on software

systems and in the discipline of software engineering. However, we still

lack the foundations that are needed to adequately support this new tool.

These foundations are needed in order to properly apply known software

engineering techniques to ADBs and systems that use them. Among the

methods and techniques used to improve quality, we count systematic

testing. In this work, we generalize structural testing techniques to ADB

systems. We introduce a model of active databases, called dbgraph, suit-

able for testing. We show that dbgraphs can be used to generalize struc-

tural testing techniques for ADBs. Moreover, we introduce several new

structural criteria aimed at �nd errors in a set of rules for an ADB. We

also compare the strength of the coverage criteria presented in this work.
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1 Introduction

Active databases (ADBs) are databases that include active components or agents

that can execute actions. These databases do not just store data: they transform

data, and may implement complex business rules and veri�cations.

The interest in active databases increased signi�cantly in recent years. From

the point of view of research, active databases present new interesting prob-

lems [6], and they inherit some others from the Arti�cial Intelligence (AI) �eld.

In fact, the analogy between active databases and knowledge-based systems

with inference rules is immediate.

From the point of view of industry, the interest in active databases has a more

practical motivation. Many database vendors are including rules in their engines

that may be triggered by the occurrence of certain events. These products do not

include all the features o�ered in active database models, as used in academy.

But in one way or the other, current products allow developers to de�ne rules

that are executed when a particular event occurs. Most of the main database

engines include event/action rules of some kind, and many vendors promise to

include more related features in future releases.

The current interest and potential future of active databases can also be il-

lustrated by the inclusion of concepts such as rules and events in some standards

and proposals, like ODMG and SQL3 [5].

The rise of active databases in the picture of software development has a

great impact on software systems and in the discipline of software engineering.

The the facto standard of client/server architectures in commercial software

systems, which in most cases means passive database servers interacting with

active clients, may be in
uenced if database servers might include rules.

However, we still lack the foundations that are needed to adequately support

this new tool. These foundations are needed in order to properly apply known

software engineering techniques to ADBs and systems that use them. The dis-

cipline of software engineering is now mature enough to promote best practices

to apply in order to produce better software. These practices are acknowledged

by most software professionals, and aim at positioning software development as

an engineering discipline.

Among the methods and techniques used to improve quality, we count vali-

dation and veri�cation techniques. In particular, systematic testing is one such

best practice that is supported by many techniques and tools. Testing involves

exercising an implementation, and is the predominant veri�cation technique

used in actual production.

Even if commercial systems are now in the market with ADB functionalities,

no tool exists supporting systematic testing of active databases. In our view,

tools can be developed only once the underlying model has been properly studied

and well-known techniques are generalized to this new model. In the case of

testing, tools are of great importance, because it is almost impossible to perform

systematic testing on a real system without the aid of tools.
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Validation and veri�cation of ADBs have been studied from the point of view

of static analysis. Static analysis, as opposed to dynamic analysis or testing,

performs veri�cation of the system without executing the code. Static veri�ca-

tion techniques for ADBs have been presented, for example, in [8, 2].

Some work has been done in dynamic analysis of rule based systems, in the

context of AI. The most relevant to ADBs is the work presented in [13]. In that

work, the author apply notions from structural testing to rule based systems.

While the motivations are very similar, and the goal is to apply structural

testing techniques to a particular kind of systems, the models developed and

the technical results are quite di�erent. The reason is that the use of rule based

knowledge bases and active databases is di�erent. Structural techniques take

into account the structure of systems, and structure is in
uenced by function [9].

For instance, the model of [13] for a set of rules are graphs in which each node

represents a rule. Clearly, we need a �ner granularity (more detail) if we want

to analyze rules that may trigger complex actions (that might cause other rules

to �re).

Our work is related to testing, and in general to veri�cation, of event/action

systems. However, active databases are a particular case of such systems, in

which we do not deal with programs: the rules of an ADB have a particular,

well-de�ned form with clear semantics. The semantics change from model to

model. In this paper we follow the model of the Starburst system [18], but

clearly the results can be easily applied to any model.

In this work, we generalize structural testing techniques to ADB systems.

Our �nal goal is to use these techniques in real systems, and thus it includes

the construction of an automatic tool. In this �rst step, we establish the basis

of structural testing in this context. In particular, we show that structural

techniques can be applied to active databases by introducing a model of active

databases, called dbgraph, suitable for testing. Criteria are based on this model.

Speci�cally, we introduce several new structural criteria aimed at �nd errors in

a set of rules for an ADB.

In the next section, we present background that is needed for the work, both

on testing and active databases. In Section 3, we introduce the dbgraph model

and we present some examples. Section 4 is devoted to the de�nition of testing

criteria for active databases based on our model. Also, we use the inclusion

relation [16] to compare the strength of the coverage criteria proposed. Finally,

in Section 5, we discuss the conclusions and some future work.

2 Background

2.1 Testing

Software testing [15, 1, 4] consists of validating computer programs through

the observation of a meaningful set of executions. A complete veri�cation of a
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program at any stage of the development process can be obtained by performing

a test for every element of the domain, i.e., for every possible input. If for each

possible input of the program the actual behavior and the expected behavior

agree, the program is veri�ed; otherwise a fault has been found. This exhaustive

testing method is the only dynamic analysis technique that would guarantee

the validity of the program. Unfortunately, this technique is not practical.

Frequently, domains are in�nite or at least su�ciently large to make the number

of required tests infeasible.

Therefore, program testing consists of the validation of the program through

the selection of a meaningful subset of all possible executions of the program

and verifying that the corresponding outputs are consistent with what the spec-

i�cation says. The subset of inputs selected to test the program is called test

(data) set or test suite. The selection of test data can be guided by di�erent

strategies or criteria for choosing representative elements from the domain. A

testing criteria groups together input elements determined by test cases. Thus,

selection criteria require to test the program using at least one representative

element of each subdomain.

A selection criteria can be based on the function or on the structure of a

program. There is no controversy between the use of functional testing versus

structural testing techniques: both are useful, both have limitations, both target

di�erent kinds of error [4].

In structural testing the structure of the program is examined in order to

analyze the consistency of a component's implementation with its requirements.

Typically, in structural based testing criteria the program structure is analyzed

on a graphical representation called a 
owgraph [12], and all the information

used to select test cases is implicit on it. The test suite tries to cover some

prede�ned features of the program's control 
ow (e.g., statements, decisions) or

data 
ow (i.e., relations between a de�nition and a use of a variable). Control


ow and data 
ow are both essential and complementary testing techniques.

Structural testing is probably the most widely used class of program testing.

The popularity of these techniques is mainly due to their simplicity and the

resulting availability of software tools to assist the testing process.

One of the most di�cult problems in testing is knowing when to stop [15].

On the one hand, it is not possible in general to give an answer to whether a test

suite guarantees the absence of faults. Therefore, it is useful to have criteria to

determine when a program has been tested \enough." On the other hand, we

need a way to limit the cost of testing. In fact, if we had unlimited resources

we could do all the testing we wanted. In real software projects, we are always

short of time or money. Consequently, we need a way to know when to stop the

testing process.

Either if the testing process has been planned in advance or the tests have

been incorporated step by step, the testing process stops when some completion

criterion or adequacy criterion is satis�ed. In theory, the adequacy criterion

should be related to some fault-rate [14] or some coverage [10]. In the second
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case, di�erent coverages are used to determine when the program has been tested

enough. The idea is to guarantee that each statement, decision, or other feature

of the program has been executed at least once under some test. Structural

testing criteria are frequently used to measure testing coverage, and thus stop

the testing process.

2.2 Active Databases

Database systems, in general, are passive: they only give answer to queries or

execute transactions required by a user or a program. In many applications it

is important to monitor di�erent situations and to react to them with certain

actions. For instance, the global amount of expenses in an organization can-

not exceed the budget. If it does, some information should be transformed or

some processing is needed. Hence, particular conditions may trigger a (possibly

complex) action. This can be solved in several ways:

In each application: Each application can check for a certain condition and

execute the related action. This approach produces software that is di�-

cult to maintain. Moreover, optimizations depend on particular details of

each application, and the code is not reusable.

A daemon application: A program can be written to check for relevant con-

ditions and execute actions accordingly. This is a better approach from the

point of view of maintenance, but frequent checking causes low database

performance. On the other hand, infrequent checking could signal events

at wrong times.

An active database system: A database manager monitors situations of in-

terest and executes related actions when they occur. This behavior is

represented by event-condition-action rules. We will go through active

database systems in the following.

An active database system [6] consists of a (passive) database and a set of

production rules or active rules. The most popular form of active rule is the

so-called event-condition-action rules, which speci�es an action to be executed

upon the occurrence of one or more events, provided that some speci�c condi-

tion holds. These rules take the form:

on event

if condition

then action

When its relevant events occur, a rule is said to be triggered; after triggering,

a rule is considered, to see if its condition holds; �nally, a considered rule with

a true condition is executed by performing its action.
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This kind of rules allow to implement referential integrity, triggers, alerts,

update data derived from other information (e.g., statistics). Moreover, the in-

ference power of the production rules makes active databases a suitable platform

for expert systems and knowledge-based systems.

A database system not only provides tools for de�ning and storing rules,

but it also allows their analysis and maintenance. It is common to activate and

deactivate them.

Event Speci�cation

In active databases, rules are in general associated with events related to data

modi�cation. In relational databases, data modi�cation is carried out using

insert, delete or update operations. For example:

de�ne rule MonitorNewEmps

on insert to employee

if ...

then ...

In some languages, events are associated with data retrieval. That is to say,

an action can be executed when speci�c data are read. For instance:

de�ne rule MonitorSalAccess

on retrieve salary

if ...

then ...

In other languages, it is possible to work with transaction events. A rule can

be associated with commit, abort or prepare-to-commit operations.

Another kind of events allowed in some managers are time dependent events.

They can be absolute (1/1/95, 8:00:00 AM), relative (�ve seconds after down-

load), or periodic (Every Friday at 7:00:00 PM).

Finally, some languages have operators to compose events. For instance,

disjunction or other logical operators.

Condition Speci�cation

A rule condition is a predicate or a query over the database's data. The con-

dition is satis�ed according to the predicate's truth or to whether the result of

the query is empty. Sometimes, the condition does not exist, meaning that the

action will always be executed. Several languages allow referring to data value

before and after data modi�cation. For example:
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de�ne rule MonitorRaise

on update to employee.salary

if employee.salary > 1.1 � old employee.salary

then ...

Action Speci�cation

Rule actions specify the operations to be executed over the database. The oper-

ations can be implicitly or explicitly given. For instance, a rollback (not written)

in a referential integrity rule is an implicit operation. Delete, update, or insert

queries are explicit operations. In these queries, deleted data, inserted data, or

modi�ed data can be manipulated before and after the occurrence of the event.

Finally, an action can be a commit or rollback. For example:

de�ne rule NewEmps

on insert to employee

then delete employee where new.name=\WHA*"

In this example there is no condition, the inserted data are used, and the action

is executed on each update. This rule says that no register with name �eld

beginning with \WHA" can be added to the table employee.

Rules Execution

When an event occurs the manager could have to make a choice between di�erent

rules related to the same event. This problem can be handled in di�erent ways:

� by forbidding the existence of more than one rule associated with the same

event;

� by setting an order over the rules, and executing them according to this

order;

� by executing all of them in parallel.

Another problem to be solved is the treatment of in�nite loops. The manager

can count how many times a rule calls itself and, for instance, stop it after a

pre�xed number of times.

Finally, it is important for the user to know the rules processing granularity:

a tuple or a set of tuples can be modi�ed. The process manager can evaluate

net e�ect, or analyze each single operation.
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Starburst

Every active database system or language has an underlying model, that �xes

the particular meaning and form of execution of the rules. In this work, we

apply the techniques to the Starbust model.

Starburst rules are based on the notion of transition. A transition is a

database change resulting from execution of a sequence of data manipulation

operations. Rules consider only net e�ect of transitions [17], meaning that (1)

if a tuple is updated several times, only the composite update is considered; (2)

if a tuple is updated and then deleted, only the deletion is considered; (3) if a

tuple is inserted and then updated, this is considered as inserting the updated

tuple; (4) if a tuple is inserted and then deleted, this is not considered at all.

The syntax for de�ning a rule is:

create rule name on table

when event

[if condition]

then action

[precedes rule list]

[follows rule list]

An event can be an insert, delete, or update operation. A rule can be

activated by a transition only if at least one operation occurs in the net e�ect of

the transition. The condition is optional, and has the form of a SQL query. The

action is an insert, update, delete, rollback, or select. The action is executed if

� the condition does not exist, or

� the condition exists, and the result is not empty.

Finally, there is a way of specify a partial order between rules, by means of

two statements: precedes and follows. This order is used if two rules can be

activated simultaneously, in order to guide the scheduling algorithm.

Testing techniques must be used to complement static analysis techniques.

This fact is immediate if the properties of interest are not decidable for the

language studied. For instance, if the properties of interest are p

1

; p

2

; :::p

n

and,

given any program P , there are algorithms to check the validity of p

i

for P ,

the importance of testing could be discussed. Even in that case, the actual

execution of the program may give useful information - in general, it is not true

that one knows everything that must be checked in a program.

However, it is important to know the expressive power of the language, in

order to have complexity measures of the problem to solve. In our case, it is

easy to see that the Starburst model is Turing complete, i.e. any computable

function can be expressed by means of a set of rules and a database schema.

This fact is given without proof in this paper (see [3]), but one way to prove it,
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is to translate any Turing machine in a set of rules and codify the tape in one

table. A consequence of this fact is that it is not possible to give algorithms to

perform static and automatic analysis of programs.

On this work, we use the Starburst model to apply our terminology. This

model is rather simple, while preserving the interesting properties of active

databases and rules. The techniques presented can be generalized to more com-

plex models if desired. Industrial products, in general, use quite simple models.

3 Dbgraphs

In this section we introduce the notion of active database 
owgraphs or db-

graphs. We assume that the basic concepts of graph theory [11] and of program


owgraphs [12] are known to the reader.

Dbgraphs model rules and their relationship in an active database. Each

rule is represented as a dbgraph. A node represents a decision (a rule point at

which the control 
ow diverges) or a junction (a rule point at which the control


ow merges). An arc represents a possible course of the control 
ow inside the

rule.

Let R be a rule. In Figure 3 we present the two possible dbgraphs for a

single rule in an active database. There are two possible decisions in a rule:

one corresponding to the if condition, and the other corresponding to the where

condition. The dbgraph in Figure 3A corresponds to a \complete rule," i.e.,

the if condition and the where condition are not empty. There is an initial

node of the rule representing the activation of the rule and the if condition.

Arc a represents the satisfaction of the if condition. Arc b represents that the if

condition does not hold. Arc c represents that the action in the rule is executed.

And arc d represents the case in which the where in the action is empty, and

the action is not executed. The head of arcs c and d are called �nal nodes of

the rule, representing the two possible states after the execution of the rule.

When the if condition of a rule is empty, then the rule is represented by the

dbgraph in Figure 3B.

Now let < be a set of rules. For each R 2 <, let the corresponding dbgraph

be G

R

= (N

R

; E

R

). The dbgraph corresponding to the set of rules < represents

every rule and the interaction between rules, i.e., the possible activation of more

rules when a rule is being executed. Hence, in a dbgraph we have two di�erent

kinds of arcs: those inside a rule (as we have seen for a single rule), and those

between rules or from the �nal node of a rule to the initial node of a rule,

indicating the possible activation of a rule. We consider that a rule R may

trigger another rule Q if the condition of Q includes a �eld of a table that can

be modi�ed by R. Note that this invocation relation can be statically detected.

Thus, the dbgraph G

<

= (N

<

; E

<

] F

<

) corresponding to the set of rules <

can be constructed in the following way:

1. For each rule R 2 <, for each node n 2 N

R

, then the node n

R

2 N

<

.
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Figure 1: Dbgraphs for a single rule

2. For each rule R 2 <, for each arc e 2 E

R

, e = (o; d), then the arc

e

R

= (o

R

; d

R

) is in E

<

.

3. If an execution of rule R can activate rule Q, then there exist an arc in

F

<

from the �nal node c

R

of R to the initial node of Q. Such an arc is

called a �ring arc.

4. Let a

i

and a

f

two new nodes in N

<

. For each R 2 <, there exists an arc

in F

<

from a

i

to the initial node n of R. There exists an arc in E

<

from

each �nal node n in N

<

to a

f

if there is no arc exiting n.

5. There are no other arcs or nodes in G

<

then those implied by item 1

through item 4.

Notice that, by construction, every node can be reached from a

i

and can

reach a

f

.

The construction of the dbgraph for an active database can be automated,

since the information needed to construct it can be obtained statically.

Let us consider an extension of an example presented in [2]. The following

simple database schema contains 3 tables.

emp(id, rank, salary)

bonus(emp id, amount)

sales(emp id, month, number)

Table emp records each employee rank and salary. Table bonus records

a bonus amount to be awarded to each employee. Table sales records each

employee's number of sales on a monthly basis.



Balzamo et al., Structural Testing of Active DataBases , EJS, 1(1) 1{20 (1998)11

The following rule increases an employee's salary by 10 whenever that em-

ployee posts sales greater than 50 units for a month.

create rule D on sales

when inserted

then update emp

set salary = salary + 10

where id in (select emp-id from inserted where number > 50)

The next rule increases an employee's rank by 1 whenever that employee

posts sales greater than 100 for a month.

create rule K on sales

when inserted

then update emp

set rank = rank + 1

where id in (select emp-id from inserted where number > 100)

The next rule increases an employee's salary by 10% whenever that em-

ployee's rank reaches 15 (we assume that ranks do not decrease), provided that

the sum of all employee's salaries is less that 20000 for a month.

create rule T on emp

when updated(rank)

if Select sum(salary) as total where total < 20000 then update emp

set salary = 1:1 � salary

where id in (select id from new-updated where rank = 15)

Finally, the following rule increases an employee's rank whenever that em-

ployee receives a raise provided that some conditions are satis�ed.

create rule V on emp

when update(salary)

then update emp

set rank = rank + 1

where id in (select id from new-updated where rank < 5 and salary < 1000)

In Figure 2 we present the dbgraph for the four rules above. There are �ring

arcs from D to V , from V to T , from K to T and from T to V , and from node

a

i

to the inital nodes of all rules.

A path, i.e., a sequence of adjacent arcs, from a

i

in a dbgraph represents

a possible sequence of �rings of rules in the ADB. If there is no input that

exercises a speci�c path, then the path is said to be infeasible. A complete path

in a dbgraph is a path such that the �rst arc in the sequence is a

i

and the last

arc is a

f

. For instance, e

i

K

;K

C

; e

i

KT

; T

a

; T

b

; e

i

KV

; V

d

; e

f

V d

is a complete path

in the dbgraph of Figure 2.

In this work, test cases for the ADB are associated with paths in a dbgraph.

Our goal is to select a set of paths in a dbgraph, in order to test the rules. In the
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next section, we propose several criteria useful to select test paths in a dbgraph,

or to evaluate testing completeness based on the coverage of a dbgraph.

We note that the generation of test data is out of the scope of this work.

4 Coverage Criteria

There are many, possibly in�nite, (complete) paths in a dbgraph. Various crite-

ria, or test strategies, can be followed to select a suitable and �nite subset of test

paths. In this section we introduce several control-
ow based coverage criteria

for dbgraphs. These criteria use the information in a dbgraph to select a subset

of all the complete paths. They can be used to generate test cases or to measure

testing thoroughness (i.e., once the rules in a ADB have been tested with test

data generated by using some other test generation method, these criteria can

be used to check how thorough those test cases have been).

4.1 Coverage Criteria

Let < be a set of rules. Let G

<

= (N

<

; E

<

]F

<

) be the dbgraph for <. First we

present several test criteria that are extensions of sequential testing strategies.

All-Paths This is the strongest criterion presented in this work. It requires to

exercise every path in G

<

, i.e., the unique set of paths that satis�es this

criterion is the set of all paths in G

<

. Notice that, if G

<

contains a cycle,

then there is an in�nite number of paths in G

<

.

All-k-Cycles This criterion provides a restriction of All-Paths, by limiting the

iterations of loops in a path. The paths selected are those that do not

iterate loops more than k times, for a given integer k. This is to say, a set

of paths satis�es this criterion if it includes all paths in G

<

that do not

iterate loops more than k times.

All-Arcs This criterion requires exercising all the arcs in the dbgraph at least

once under some test. Thus, a set of paths } satis�es this criterion if for

each arc e in the dbgraph there is at least a path in } including e.

All-Nodes This criterion requires that all the nodes in the dbgraph be exer-

cised at least once under some test. Hence, a set of paths } satis�es this

criterion if for each node n in the dbgraph there is at least a path in }

including n.

Now we present several testing criteria that use speci�c information provided

by ADB.

All-Actions This strategy guarantees that every action in every rule of the

ADB is exercised at least once under some test. Then, it requires to
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exercise all the arcs representing an action in the dbgraph. This is to say,

a set of paths } satis�es this criterion if for each arc e that represents

an action in a rule in the dbgraph, there is at least a path in } passing

through e.

For instance, if

p

1

= e

i

D

; D

c

; e

i

DV

; V

d

; e

f

V d

, and

p

2

= e

i

K

;K

c

; e

i

KT

; T

a

; T

c

; e

d

TV

; V

c

; e

d

V T

; T

b

; e

f

Kd

,

thus, the set of complete paths fp

1

; p

2

g satis�es the All-Actions criterion

for the dbgraph in Figure 2.

This criterion adopts a pure state-transition point of view. On this view,

only actions are of interest because only them might modify the state of

the database. This coverage exercises all actions at least once, and hence

all possible \modi�cations" of the state of the database are executed at

least once. Relations among actions are not taken into account.

All-Rules This criterion guarantees that every rule is exercised at least once

under some test. Thus, it requires to exercise all the initial nodes in the

dbgraph. This is to say, a set of paths } satis�es this criterion if for each

initial node n in the dbgraph, there is at least a path in } including n.

For instance, the set of complete paths fp

1

; p

2

g satis�es the All-Rules

criterion for the dbgraph in Figure 2.

This criterion formalizes the intuitive idea of \trying at least one every

rule." In the actual testing of an actual database, it guarantees that no

rules remain unexplored.

All-Firing-Arcs This criterion requires to exercise all the �ring arcs in the

dbgraph. To exercise these arcs is important since they represent the

calling of a rule by the system and the calling between rules. This is to

say, a set of paths } satis�es this criterion if for each arc e in F

<

, there is

at least a path in } including e.

For instance, if

p

3

= e

i

V

; V

d

; e

f

V d

,

p

4

= e

i

T

; T

b

; e

f

Td

,

thus, the set of complete paths fp

1

; p

2

; p

3

; p

4

g satis�es the All-Firing-Arcs

criterion for the dbgraph in Figure 2.

This criterion re
ects that it is important, besides checking every rule, to

check every form in which a rule can be activated. Firing arcs between

rules can appear in an unexpected way: for instance, a new rule includes

an action that modi�es a �eld that triggers another rule. Hence, these

forms of activation must be veri�ed; it is not enough to check rules. This

criterion can be used when merging databases with rules, when adding new
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rules to a database, or when upgrading an application that uses rules. On

all these cases, it is clever to analyze possible activation among old and

new rules.

4.2 Comparison of Active DataBases Structural Testing

Criteria

We have presented several coverage criteria for active databases. However, there

is no information about how these methods compare. One common way of

comparing criteria is to use the inclusion or subsumption relations [16]. In this

work, we use the inclusion relation to compare the strength of the coverage

criteria proposed in the last section. Let c

1

and c

2

be two coverage criteria

from those presented in the last section. We say that c

1

includes c

2

, written as

c

1

! c

2

, if for every set of paths } satisfying c

1

, } satis�es c

2

as well. If neither

c

1

nor c

2

include the other, then c

1

and c

2

are said to be incomparable.

For the criteria presented in this paper, we have the following facts:

� All-Paths ! All-k-Cycles.

� All-k-Cycles ! All-Arcs.

� All-Arcs ! All-Nodes.

� All-Nodes ! All-Actions, since the only way to reach the node head of

the arc representing an action, is to pass through that arc.

All-Actions does not include All-Nodes. As an example, we consider the

dbgraph for a single complete rule. The loop-free path p = a; c covers the

rule for the All-Actions criterion. However, this path does not cover the

HEAD of d, and then the All-Nodes criterion is not satis�ed.

� All-Arcs ! All-Firing-Arcs, since the set of �ring arcs is a subset of all

the arcs in the dbgraph.

All-Firing-Arcs does not include All-Arcs. For example, we consider again

the dbgraph for a single complete rule, and the path p covering c. In this

case, d is not covered, and then All-Arcs is not satis�ed.

� All-Firing-Arcs ! All-Rules, since to reach the initial node of a rule, the

path must contain at least one �ring arc (remember that arcs starting at

a

i

are also �ring arcs).

All-Rules does not include All-Firing-Arcs. For example, a path covering

the arc d satis�es the All-Rules for the dbgraph of a single complete rule.

However, this path does not satisfy All-Firing-Arcs since the arc from a

i

to the initial node of the rule is not covered.
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� All-Actions ! All-Rules, since every rule contains an action and to cover

the action of a rule you must pass through the initial node of that rule.

All-Rules does not include All-Actions. For example, a path covering the

arc d satis�es the All-Rules for the dbgraph of a single complete rule.

However, this path does not satisfy All-Actions, since arc c is not covered.

� All-Actions and All-Firing-Arcs are incomparable.

First, suppose that there is a �ring arc that triggers the rule R, and the

action in R does not trigger any rule. Suppose that a test case is chosen to

cover that �ring arc, such that it does not cover the action in R. Thus, the

covering of All-Firing-Arcs does not guarantee the covering of All-Actions.

Now, p

1

= e

i

D

; D

c

; e

i

DV

; V

c

; e

i

V K

; T

a

; T

c

; e

i

KV

; V

d

; e

f

V d

, and p

2

=

e

i

K

;K

c

; e

i

KT

; T

b

; e

f

Td

are two complete paths in the dbgraph of Figure

2. And fp

1

; p

2

g satis�es All-Actions, but does not satisfy All-Firing-Arcs.

Thus, the covering of All-Actions does not guarantee the covering of All-

Firing-Arcs.

� All-Nodes and All-Firing-Arcs are incomparable. Let p

3

= e

i

D

; D

d

; e

f

Dd

,

and p

4

= e

i

K

;K

d

; e

f

Kd

. Thus, the set of complete paths fp

1

; p

2

; p

3

; p

4

g in

the dbgraph of Figure 2 satis�es All-Nodes, but not All-Firing-Arcs, since

arc e

i

T

is not covered.

Let p

5

= e

i

T

; T

b

; e

f

Td

, and p

6

= e

i

V

; V

d

; e

f

V d

. Then, the HEAD of arcK

d

is not covered by the set of complete paths fp

1

; p

2

; p

5

; p

6

g, that satis�es

All-Firing-Arcs.

Then, the family of criteria presented in this paper is partially ordered by

inclusion, as shown in Figure 3. In fact, a criterion c

1

includes a criterion c

2

if and only if the inclusion is explicitly shown in Figure 3 or follows from the

transitivity of the relations.

5 Conclusions and Future Work

In this work, we have presented dbgraphs, a model for active databases. We have

shown that it can be used to generalize structural testing techniques for active

databases. We have also de�ned new testing criteria based on the information

provided by the rules in an ADB. In this way, the criteria introduced are not

just a generalization of existing criteria: they take into account the nature of

active databases.

In order to establish whether these criteria are useful or not, adequate ex-

perimentation must be performed. Only after using the criteria in a signi�cant

set of cases we might take de�nitive conclusions. Therefore, the next step is to

build a testing tool based on the results presented here. This tool will construct

a model from a set of rules (getting the information from the Data Dictionary or
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metamodel) and will help in checking satisfaction of criteria and in the selection

of inputs. It is also very simple to generalize structural complexity metrics [7]

to the case of active databases, letting the tool calculate such metrics.

Moreover, when the tool will be ready, it will be easier to perform experi-

ments with di�erent kind of systems to both re�ne the model and de�ne new

criteria. Besides, it will help to analyze whether some concepts (for instance,

structural complexity) are meaningful in this context.

The model presented in this work is based on the control 
ow in a rule and

between rules. We plan to further extend the results obtained to data 
ow

structural testing.

Our work is based on the Starburst model. This model is very simple. How-

ever, the results can be generalized, because the complexity of other models

might be handled using techniques already applied in procedural languages [1].

The integration of techniques is also an interesting problem. For instance, sup-

pose we are analyzing a complete system, part implemented via the active

database and part in a procedural language. It is too simplistic to consider

that if we cover both parts separately we are covering it as a whole. Somehow,

we need to integrate what is done in the procedural part with the model for

the active database rules. Database languages used in industry allow actions to

be speci�ed in a procedural language. In order to perform experimentation on

real systems, we must solve this integration between ruled based and procedural

models for structural testing.
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Figure 2: Dbgraph for rules D;T;K; V
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