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Abstract

The Multi-threaded Paging problem (MTP) was introduced as a gener-

alization of Paging for the case where there are many threads of requests.

This models situations in which the requests come from more than one

independent source. At each step it is necessary to decide which request

to serve among several possibilities, and also (as in normal Paging) which

page of fast memory to remove on a page fault. In the fair version of

the problem any algorithm must guarantee that the next request of each

thread will be served within a predetermined �nite time.

In this paper we reduce the existing gaps between the known lower

and upper bounds for the competitiveness of on-line algorithms for the

fair version of MTP. We treat some particular situations, with �nite and

in�nite input sequences. We prove higher lower bounds and present a new

on-line algorithm. We close the gap for the case in which the cache can

hold only one page; surprisingly, we obtain di�erent bounds for even and

odd number of sequences; we prove that any lazy algorithm achieves the

on-line lower bound when the number of sequences is odd.
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1 Introduction

The Paging problem consists of managing a two-level memory, one of them with

limited capacity and fast access (the cache) and the other one with slow access

but potentially unlimited capacity. A Paging algorithm is faced with a sequence

of page references. At each step the algorithm must ensure that the requested

page is in fast memory, perhaps evicting another page to make room for the

incoming one. A page fault occurs each time a page must be brought into fast

memory. The goal of the Paging algorithm is to minimize the total number

of page faults over the sequence of requests. An on-line algorithm for Paging

must decide which page to evict without knowledge of future requests, while an

o�-line algorithm can decide based on the whole sequence. On-line algorithms

for Paging have been studied from a competitive analysis point of view in [10],

comparing their performance to that of the optimal o�-line algorithm. In that

work it is shown that, if the cache can hold k pages, no deterministic on-line

algorithm can be better than k-competitive, that is, guarantee less than k times

the optimal o�-line number of page faults on every input; besides, it is shown

that known on-line algorithms such as Least-Recently-Used (LRU) and First-

In-First-Out (FIFO) achieve that bound.

The Multi-threaded Paging problem (MTP) was introduced as a generaliza-

tion of Paging for the case in which there is not just one sequence of requests but

possibly many threads [5, 6]. This models situations in which the requests come

from more than one independent source, as in multi-tasking systems where all

processes independently present their requests of memory pages to the manager

of fast memory. At each step it is necessary to decide which request to serve

among several possibilities, and also (as in normal Paging) which page of fast

memory to remove on a page fault. The total number of page faults depends

therefore not only on the strategy used to determine how each request is served

but when (in which order) this is done. Moreover, in some cases even the set of

requests that will eventually be served depends on the particular algorithm that

is used. As it can be seen, in MTP there is no notion of \sequence of requests"

but a more complex pattern that is not captured by the most general classes of

on-line problems proposed in the literature (like Metrical Task Systems [4] or

Request-Answer Games [2, 9]).

Two versions of MTP were presented in [6]. In the �rst one, the goal is just

to minimize the number of page faults done while serving a set of w sequences of

requests. In the second one, fairness restrictions are imposed, so any algorithm

must guarantee that the next request of each thread will be served within a

predetermined �nite time. For each one of these two problems, �nite and in�nite

sequences of requests can be considered. In [6] it was proved that the only

case in which there exist competitive on-line algorithms for the fair version is

when fairness restrictions are so tight that enforce serving one request of each

thread in a cyclic way. For that case, a (k + w)-competitive on-line algorithm

was proposed, and a lower bound of k for the competitiveness of any on-line
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algorithm was obtained.

In this paper we address some of the problems that were left open when

MTP was introduced. More precisely, for some particular situations of the fair

version of MTP we reduce the existing gaps between the known lower and upper

bounds. We treat several cases: The �rst one is the case in which the cache can

hold only one page (k = 1) and the number of sequences is even; we raise from

1 to w+1 the known lower bound, and therefore the on-line algorithm from [6]

is strongly competitive (optimal). In the second case again we have k = 1,

but now we consider an odd w; in this case the new lower bound is w, and we

prove that any algorithm that does not unnecessarily evict pages achieves that

bound. The third case is when w � k; we present a (k + 1)-competitive on-line

algorithm, reducing the existing gap to 1.

The case k = 1 models the scheduling problem in which a machine serves

w sequences of tasks, where the cost of each task is insigni�cant or zero, and

the cost of switching tasks is unitary. This is an extreme situation of the more

general case k < w. We treat that extreme situation and the opposite case, that

is, the case w � k.

Fiat and Karlin [7] have considered a version of Paging in which the in-

put corresponds to a multi-pointer walk on an access graph [3]. Within that

framework, there are multiple threads of requests, but they are seen as a unique

sequence corresponding to an interleaved execution of the di�erent threads. The

way in which the threads are interleaved in [7] is decided in an earlier stage of

the process. On the contrary, in MTP the algorithms are free to decide (up

to a certain limit, in the case of fairness restrictions) how to do that. In other

words, the algorithms for MTP act not only as fast memory managers but also

as schedulers, while in the cited work the scheduling is implicitly supposed to

be done somewhere else.

Recently, Alborzi et al. [1] have proposed a multi-threaded version of the

1-server problem. They consider a metric space in which a server moves at

constant speed to satisfy requests generated by many clients; each request is

satis�ed when the server arrives to the location of the request, and then the

corresponding client presents a new request in another place of the metric space.

Although the 1-server problem is a generalization of Paging with k = 1, only

�nite input sequences are considered in [1], and fairness restrictions are not

stated.

The remainder of this paper is organized as follows: In Section 2 we formally

present the fair version of MTP, with �nite and in�nite input sequences, and

detail the known results about it. In Section 3 we treat the case k = 1 and

even w. In Section 4 we complete the case k = 1 by considering an odd w. In

Section 5 we analyze the case w � k. We conclude in Section 6 by presenting

some remarks.
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2 Preliminaries

2.1 Description of the Problem

Imagine that w independent processes simultaneously present their requirements

of pages of secondary memory that must be brought into fast memory. At each

moment, the scheduler and fast memory manager can see only one request per

process, precisely the �rst unserved request of the sequence of requests that the

process presents. Serving the current request of a particular process allows the

system to see the next request of that process. The system must decide at each

step which request should be served, apart from deciding which page of fast

memory to evict to make room for the incoming page if that is the case.

MTP allows the modeling of the above problem as follows. In the �nite

version, called Finite-MTP (FMTP), algorithms are faced to a certain number of

�nite sequences of requests that have to be served completely, that is, algorithms

have to arrive to the end of each one of the sequences. FMTP is given by

the universe or set of pages U and two positive integers k and w, the size of

the cache and the number of sequences respectively. C = P

k

(U) is the set of

con�gurations, where P

k

(U) is the power-set of U restricted to subsets of size

k. � 2 (U

�

)

w

is the input tuple, � = �

1

; �

2

; : : : �

w

, where each �

i

is a sequence

of requests. We can view � as a set of sequences of requests; each request is an

element of the universe U . The tuple of the j-th requests is called the j-th row

of requests.

We can imagine that we have a pointer to the current position in each se-

quence �

i

. In a certain con�guration c, the system can advance the pointer of

some sequence �

i

such that u

i

, the currently pointed page of �

i

, is present in

c. Given an input tuple � and an initial con�guration, a schedule for � is a

sequence of pairs < i

j

; c

j

>, where 1 � i

j

� w, such that the currently pointed

request of �

i

j

may be served in con�guration c

j

. The cost of such schedule is

the summation over the sequence of the Hamming distance between successive

con�gurations. At any stage of a schedule, any sequence �

i

whose last request

has not been served is called active.

An algorithm for FMTP receives a tuple of sequences � as input and produces

as output a schedule for �. An on-line algorithm must produce the schedule with

the restriction that each con�guration must be determined only as a function of

the current tuple of requests and all the requests already served by the algorithm.

On the contrary, an o�-line algorithm can decide based on the entire input. An

algorithm for FMTP is c-competitive if and only if there exists a constant D

such that for any input tuple �, we have C

A

(�) � c �C

OPT

(�)+D, where C

A

(�)

is the cost incurred by the algorithm, and C

OPT

(�) is the cost incurred by an

optimal o�-line algorithm.

The de�nition of FMTP is modi�ed to get the in�nite version of the problem,

In�nite-MTP (IMTP). In IMTP the sequences of requests are in�nite, that is,

the input to an algorithm is � 2 (U

!

)

w

instead of � 2 (U

�

)

w

, where �

!

denotes
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the set of in�nite words over an alphabet �. In this case, although the sequences

are in�nite, the system is observed after a �nite number ` of steps, when we

compare the cost incurred by the distinct algorithms with the cost of an optimal

o�-line algorithm that advances at least the same number of steps. Notice that

the value of ` is not known by on-line algorithms.

In a multi-threaded environment it is desirable to include fairness restric-

tions. In MTP these restrictions are modeled by considering, as part of the

input of the problem, an integer t such that fair algorithms are restricted to act

as follows: from the moment any request is seen till the moment that request

is served, at most t other requests can be satis�ed. Consequently, the notion of

t-fair schedule is de�ned. This allows the de�nition of the Fair-MTP problem,

the fair version of MTP. An algorithm for Fair-MTP must produce a t-fair

schedule for the input tuple of sequences. Again there are �nite and in�nite

versions of the problem, namely Fair-FMTP and Fair-IMTP.

2.2 Previous Results

In [6] it was proved that there is no competitive on-line algorithm for Fair-MTP

with t � w � 2. This means that competitive on-line algorithms can exist in

only two cases of Fair-MTP: w = 1 and t = w�1. In the case of �nite sequences

of requests (that is, Fair-FMTP) there is no competitive on-line algorithm when

w � 3, even with t = w� 1. This is because on-line algorithms can be forced to

serve a �rst sequence of length 1; in practice this is equivalent to have t = w.

Among the cases where on-line competitiveness is possible, we can ignore

the situation in which w = 1: with w = 1 fairness restrictions have no sense,

and we are faced to regular Paging. On the other hand, the case t = w � 1

requires further analysis. In this situation the algorithms (on-line or not) must

apply round-robin, i. e., serve one request of each sequence in a �xed order

which is repeated over and over again. This particular case of Fair-MTP is

closely related to normal Paging, since after an algorithm has chosen the order

in which to serve the requests, we can think that there is only one sequence to

be served, as it is the case in normal Paging. Nevertheless, the two problems

are di�erent, as we can see:

� In Fair-MTP we can say that any algorithm has served the same set of

requests only after each w new requests (after each row of requests), not

at every step as in normal Paging.

� The algorithms (of any type) can choose between w! distinct orders of the

sequences. A priori this is an advantage for o�-line algorithms, because

they can decide with information on the whole input tuple, while any

choice made by an on-line algorithm can be fooled if the �rst two requests

of all the sequences are to the same page. In other words, from a compet-

itive analysis point of view, o�-line algorithms can really decide in which
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order to serve the sequences, while the choice of an on-line algorithm is

an illusion.

� The on-line algorithms can see the following w requests to serve, not only

one of them. More precisely, on-line algorithms can make use of a looka-

head of size w. This is not a clear advantage for on-line algorithms, since

this kind of lookahead can be easily neutralized by replacing each request

with w requests to the same page.

A lower bound of k for the competitiveness of any on-line algorithm for Fair-

MTP can be obtained by considering equal sequences, each one like the nemesis

sequence used in the proof of the lower bound for normal Paging.

An on-line algorithm for Fair-MTP called Round-Robin{Flush-When-Full

(RRFWF) was presented in [6]. The algorithm is based on Flush-When-Full

(FWF), a very well known k-competitive on-line algorithm for Paging [8], al-

though any deterministic marking algorithm for Paging can be used instead

(for instance, LRU). FWF maintains a set of marked pages. Initially no page is

marked. On each request, an unmarked page is evicted to make room for the

requested page if necessary; in any case the requested page is marked. FWF

works in phases, the �rst phase starting with the �rst request of the sequence

and each new phase starting with the request that would have caused more than

k pages to be marked (when the marks are deleted). It is easy to verify that

FWF never faults twice on the same page during any given phase, which implies

that its cost is at most k per phase; besides, if we consider all the requests of a

phase plus the �rst request of the following phase, k + 1 distinct pages appear.

Algorithm RRFWF for Fair-MTP is described in Fig. 1. The algorithm

works in \super-phases"; each super-phase consists of applying a phase of FWF

to the sequence formed by taking in turn one request of each active sequence

�

1

; �

2

; : : : �

w

, and then serving the next request and all the other pending re-

quests in the same row; these additional requests are served by RRFWF in an

arbitrary deterministic way. Clearly RRFWF is fair for any legal value of t. It is

not di�cult to show that it is (k+w)-competitive for Fair-IMTP with t = w�1.

Algorithm RRFWF is (k +w)-competitive also for Fair-FMTP with t = w � 1,

but of course when w � 2 only.

3 The Case k = 1 and Even w

In this section we will analyze the case of Fair-MTP in which the cache can hold

only one page and the number of sequences is even. We will consider in�nite

and �nite input sequences, and we will restrict our attention to the situations

where on-line competitiveness is possible. As it is usually done in competitive

analysis, we will compare on-line strategies against an adversary that chooses

the input and serves it optimally.
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While there is at least one request to be served do

% a new super-phase starts

Apply a phase of FWF to the sequence �

�

formed by taking

in turn one request of each active sequence �

1

; �

2

; : : : �

w

Serve the next request of �

�

(no matter how)

Serve all the pending requests of �

�

in the same row

of the last served request (no matter how)

end While.

Figure 1: Algorithm Round-Robin{Flush-When-Full

3.1 In�nite Sequences

Till now the known lower bound for the competitiveness of on-line algorithms

for Fair-IMTP with t = w � 1 was k; this bound becomes trivial when k = 1.

We will now prove a higher lower bound for an even number of sequences, using

that the adversary can choose an appropriate order for the threads.

Theorem 3.1.1 No on-line algorithm for Fair-IMTP with t = w � 1, k = 1

and even w, is c-competitive if c < w + 1, even if we restrict the sequences of

requests to be formed by at most 2 distinct pages.

Proof Let A be any on-line algorithm and ADV an o�-line adversary. We will

show a set of sequences �

1

; �

2

; : : : �

w

for which A cannot behave better than the

proposed bound.

Let U = fa

1

; a

2

g be a set of 2 distinct pages, where a

1

is a page not in A's

cache at the beginning. We will describe the input tuple by rows of requests.

The �rst row is formed by page a

1

for the odd sequences �

1

; �

3

; : : : �

w�1

, and by

page a

2

for the even sequences �

2

; �

4

; : : : �

w

. In the second row, all the requests

are to page a

1

. Each new pair of rows is like the previous one, but with pages a

1

and a

2

interchanged (see Fig. 2). Let ` = 2wn be the total number of requests to

be served, where n is any positive integer. Without loss of generality assume that

A serves one request of each sequence in the order �

1

; �

2

; : : : �

w

(otherwise, we

add two initial rows with requests only to page a

2

, and rearrange the sequences

if necessary). Since k = 1, only one page can be held in fast memory at a time,

and therefore A necessarily faults on each request of the odd rows and on each

�rst request of the even ones; thus, its total cost is C

A

� (w + 1)n.

The adversary can use any order in which the even sequences appear before

the odd ones, e. g., �

2

; �

4

; : : : �

w

; �

1

; �

3

; : : : �

w�1

. In this way it groups the

repeated requests, and faults only once every two rows. Then the total cost of

the adversary is C

ADV

� n, and we have for the competitive ratio

C

A

C

ADV

�

(w + 1)n

n

= w + 1 :
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�

1

� � � �

odd

�

even

� � � �

w

a

1

a

1

a

2

a

2

a

1

a

1

.

.

.

a

1

a

1

a

2

a

2

a

1

a

1

.

.

.

a

2

a

1

a

1

a

2

a

2

a

1

.

.

.

a

2

a

1

a

1

a

2

a

2

a

1

.

.

.

Figure 2: Sequences used in the proof of Theorem 3.1.1

2

As we can see the above lower bound is tight, since algorithm RRFWF

described in Section 2 is (k + w)-competitive for Fair-IMTP with t = w � 1.

Corollary 3.1.2 Algorithm RRFWF is strongly competitive for Fair-IMTP with

t = w � 1, k = 1 and even w.

3.2 Finite Sequences

We can reproduce in the �nite model the results we have obtained for in�nite

sequences. The following lower bound for Fair-FMTP with t = w� 1 and k = 1

is only interesting when the number of sequences is w = 2.

Theorem 3.2.1 No on-line algorithm for Fair-FMTP with t = w � 1, k = 1

and even w, is c-competitive if c < w + 1, even if we restrict the sequences of

requests to be formed by at most 2 distinct pages.

Proof The proof is the same of Theorem 3.1.1, except that we use �nite

sequences, all of them of the same length. 2

Again the above lower bound is tight for the cases in which competitive on-

line algorithms can exist, since algorithm RRFWF is (k + w)-competitive for

Fair-FMTP with t = w � 1 and w � 2.

Corollary 3.2.2 Algorithm RRFWF is strongly competitive for Fair-FMTP

with t = w � 1, k = 1 and w = 2.

4 The Case k = 1 and Odd w

In this section we will consider an odd number of sequences for Fair-MTP with

t = w � 1 and k = 1. This completes the analysis of Fair-MTP when the size
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of the cache is 1. As we will see, lower and upper bounds di�er from the ones

obtained for an even number of sequences. Nevertheless, again we will show

an optimal on-line algorithm. Moreover, we will prove that any reasonable

algorithm is optimal. The only case of Fair-FMTP with an odd number of

sequences in which competitive on-line algorithms can exist is regular Paging

(w = 1); so we will omit a useless discussion, and we will treat only the in�nite

model.

4.1 In�nite Sequences

We start with a lower bound for the competitive ratio of on-line algorithms.

Theorem 4.1.1 No on-line algorithm for Fair-IMTP with t = w � 1, k = 1

and odd w, is c-competitive if c < w, even if we restrict the sequences of requests

to be formed by at most 2 distinct pages.

Proof If w = 1 then there is nothing to prove. For w � 3 the proof is as follows.

The �rst w�1 sequences are constructed as in Theorem 3.1.1. Sequence �

w

is a

copy of �

1

. Without loss of generality assume again that the on-line algorithm

A serves the sequences in the order �

1

; �

2

; : : : �

w

. In this situation A faults on

each request of the odd rows (note that the even rows are redundant). Then its

cost for ` = 2wn requests is C

A

� wn. The adversary can group the repeated

requests as in Theorem 3.1.1 faulting only once every two rows, with a total

cost C

ADV

� n. Therefore we have

C

A

C

ADV

�

wn

n

= w :

2

In normal Paging with k = 1 there is no particular strategy that a good

algorithm must follow: if the requested page is in the cache, then nothing is

done; otherwise the page must be brought into fast memory, replacing the only

page that is there. Any algorithm that does not unnecessarily evict pages is

optimal. In Fair-IMTP with t = w�1 and k = 1 the situation is the same, except

that the algorithms can choose between w! distinct orders of the sequences. We

said that this choice is useless for an on-line algorithm, so it makes sense that

any on-line algorithm is strongly competitive. We will now see that this is the

case, at least for an odd number of sequences. We are able to prove that any

lazy algorithm (on-line or not) for Fair-IMTP with t = w� 1, k = 1 and odd w,

is w-competitive. A lazy algorithm is one which only evicts a page on a page

fault, and in that case evicts exactly one page.

Theorem 4.1.2 Any lazy algorithm for Fair-IMTP with t = w � 1, k = 1 and

odd w, is w-competitive.
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Proof Let A be any lazy algorithm (on-line or not) and ADV an o�-line

adversary. To measure the costs of both algorithms we will split the rows of

requests into disjoint stages. The �rst stage starts with the �rst row and ends

with the �rst row in which the adversary has no cost. Each new stage starts

with the row immediately after the last row of the previous stage, and ends

with the next row in which again the adversary has no cost. We will consider

that the i-th stage starts and ends with the p

i

-th and the q

i

-th rows of requests,

respectively. We will denote by C

i

A

and C

A

(j) the costs of A in the i-th stage

and in the j-th row, respectively. A similar notation is valid for the adversary.

Notice that (8j)C

A

(j) � w.

Suppose that after ` requests the algorithms completed m stages and are

currently in the (m+1)-st stage. Before we measure the costs of the algorithms,

it is convenient to point out some facts about the stages we have de�ned. In

the completed stages (i � m), the last row veri�es C

ADV

(q

i

) = 0, which implies

that all the requests in the row are to the same page, and hence C

A

(q

i

) � 1;

besides, both A and the adversary start the next stage with the same contents

in the cache. On the other hand, in each row r but the last one (p

i

� r < q

i

)

we have C

ADV

(r) � 1; this is also true for the completed rows of the (m+1)-st

stage, because otherwise we would have an additional stage.

We will now analyze the costs in the di�erent stages:

� In the �rst stage, all the rows but the last one verify C

ADV

(r) � 1, and

then we have

C

1

A

� wC

1

ADV

+ w :

� In the last stage, all the rows except eventually the last one verify the

same condition C

ADV

(r) � 1, and then we have

C

m+1

A

� wC

m+1

ADV

+ w � 1 :

� Let s be an intermediate stage (2 � i � m) for which A does not pay in

the last row of the stage. Again all the other rows verify C

ADV

(r) � 1,

and then we have

C

i

A

� wC

i

ADV

:

� We must now consider the costs in each intermediate stage (2 � i � m)

for which A pays in the last row of the stage. The only possibility is

that C

A

(q

i

) = 1, since we know that C

A

(q

i

) � 1. First notice that the

algorithms start the last row of the stage with di�erent contents in their

caches; this is because all the requests in that row are to the same page,

while C

A

(q

i

) 6= C

ADV

(q

i

) (1 6= 0). It follows that the stage has at least two

rows of requests. We claim that among the rows that are not the last one

of the stage, there exists at least one row which veri�es C

A

(t

i

) � w � 1

or C

ADV

(t

i

) � 2. Suppose this is not true, i. e., for each row we have

C

A

(r) = w and C

ADV

(r) = 1, in particular for the �rst row of the stage.
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Let a

i

be the page in the caches of both A and the adversary when they

start serving the stage. Since C

ADV

(p

i

) = 1, from the adversary's point of

view, this �rst row is formed by zero or more requests to page a

i

, followed

by one or more requests to another page b

i

(b

i

6= a

i

). On the other hand,

since C

A

(p

i

) = w, for A the row looks like alternating requests to pages a

i

and b

i

, starting and ending with b

i

because A faults on each request and

w is odd. Hence, once the �rst row of the stage is completed, we are as in

the beginning of the stage, in the sense that both A and the adversary has

the same contents in the cache (now it is page b

i

). We can think about

the second row of the stage like we did about the �rst, and so on, until

we arrive to the last row of the stage. This last row starts with the same

contents in the cache of both algorithms, but we said it cannot happen.

This is a contradiction, and therefore our claim is true. If C

A

(t

i

) � w� 1

we have

C

A

(t

i

) + C

A

(q

i

) � (w � 1) + 1 = w � wC

ADV

(t

i

) =

= w [C

ADV

(t

i

) + C

ADV

(q

i

)] ;

while if C

ADV

(t

i

) � 2

C

A

(t

i

) + C

A

(q

i

) � w + 1 � 2w � wC

ADV

(t

i

) =

= w [C

ADV

(t

i

) + C

ADV

(q

i

)] :

Since the row we found veri�es at least one of those conditions, and the

other rows in the stage (except the last one) verify C

ADV

(r) � 1, again

we have

C

i

A

� wC

i

ADV

:

The total costs C

A

and C

ADV

are the sums of the costs in each stage, and hence

C

A

=

m+1

X

i=1

C

i

A

�

 

m+1

X

i=1

wC

i

ADV

!

+ 2w � 1 = wC

ADV

+ (2w � 1) ;

that is, A is w-competitive. 2

The preceding proof cannot be applied to an even number of sequences; the

problem arises with the last kind of stages we considered, where the induction

is not valid for an even w.

It is worthwhile to mention that the lower bounds shown in this and the

previous section can be generalized to arbitrary values of k, so as to obtain a

general lower bound of (roughly) w=k. This new lower bound is linear in the

number of sequences, and when w > k

2

it is better than the already known

lower bound of k.
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While there is at least one request to be served do

% a new super-phase starts

Repeat

Apply a phase of FWF to the sequence �

�

formed by

taking in turn one request of each active sequence

Until it is possible to serve with unitary cost

the next request of �

�

and all the pending requests

in the same row of that request

Serve the next request of �

�

and all the pending requests

in the same row of that request (with unitary cost)

end While.

Figure 3: Algorithm Check-Row{Flush-When-Full

5 The Case w � k

In this section we will analyze the case of Fair-MTP in which w � k. This case

is the opposite situation to the extreme case of the two previous sections (where

we considered k = 1). We will present a new on-line algorithm for Fair-MTP

and we will show that for w � k it behaves better than RRFWF, the known

on-line algorithm for Fair-MTP.

5.1 In�nite Sequences

The new on-line algorithm for Fair-MTP is called Check-Row{Flush-When-Full

(CRFWF), and it is described in Fig. 3. Algorithm CRFWF can be regarded

as a modi�cation of RRFWF: CRFWF works in super-phases and serves the

requests row by row as RRFWF does; the di�erence is that in each super-phase

RRFWF applies one phase of FWF and serves some additional requests (see

Fig. 1), while CRFWF applies one or more phases of FWF until it is possible

to serve the additional requests with unitary cost. As we will see now, CRFWF

beats RRFWF in Fair-IMTP with t = w � 1 and w � k.

Theorem 5.1.1 Algorithm CRFWF is (k+1)-competitive for Fair-IMTP with

t = w � 1 and w � k.

Proof Assume that after ` requests CRFWF completed m super-phases, each

one having p

i

� 1 phases (1 � i � m), and is currently in the (m+1)-st super-

phase with p

m+1

� 0 phases completed in this last super-phase. To terminate a

super-phase CRFWF entirely serves its last row; thus the adversary has served

all the requests in the super-phases that CRFWF has completed. Consider the

i-th of those super-phases (1 � i � m). By de�nition of CRFWF, the cost of



A. Strejilevich de Loma, Fair Multi-threaded Paging , EJS, 1(1) 21{36 (1998)33

each phase is at most k, and then the cost for the super-phase is

C

i

CRFWF

� p

i

k + 1 � (k + 1)p

i

:

To analyze the adversary's cost in the super-phase, we associate to each odd

phase an xphase (extended phase) as follows: we include in the xphase all the

requests of the odd phase plus the next request served by CRFWF, and all the

requests in the rows of the already included requests; note that we include in

the xphase all or none of the requests of any given row. Being w � k, each phase

has at least w requests, and then the xphases are disjoint. From the behavior

of FWF we know that in each xphase at least k+1 di�erent pages appear; this

implies that the adversary must fault at least once in each xphase. If an xphase

is not associated with the last phase of the super-phase, then the number of

distinct pages is at least k + 2 (because otherwise the super-phase would �nish

in that xphase); in these xphases the adversary must fault at least twice. If p

i

is even, there is no xphase associated with the last phase of the super-phase;

then the cost of the adversary in the super-phase is

C

i

ADV

� 2

p

i

2

= p

i

:

If p

i

is odd, the last xphase corresponds to the last phase of the super-phase,

and hence the cost is

C

i

ADV

� 2

p

i

� 1

2

+ 1 = p

i

:

In both cases we have for the costs in the super-phase

C

i

CRFWF

� (k + 1)p

i

� (k + 1)C

i

ADV

:

In the (m+ 1)-st super-phase the cost of CRFWF is

C

m+1

CRFWF

� p

m+1

k + k � (k + 1)p

m+1

+ k :

We can think about the adversary's cost in this super-phase as we did for the

other super-phases. Nevertheless we must discard the last phase of the super-

phase, because we do not know whether the adversary has served those requests.

Thus we have

C

m+1

ADV

� p

m+1

� 1 ;

which implies

C

m+1

CRFWF

� (k+1)p

m+1

+k = (k+1) (p

m+1

� 1)+2k+1 � (k+1)C

m+1

ADV

+2k+1 :

Summing over all the super-phases we obtain that the total costs C

CRFWF

and

C

ADV

verify

C

CRFWF

=

m+1

X

i=1

C

i

CRFWF

� (k+1)

m+1

X

i=1

C

i

ADV

+2k+1 = (k+1)C

ADV

+(2k+1) :

2
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Table 1: Summary of previous and current results about Fair-IMTP (Im =

Improved; Cl = Closed).

Previous Current

l.b. u.b. l.b. u.b. Im? Cl?

t � w 1 � 1 �

p

t = w � 1, k = 1 and even w 1 w + 1 w + 1 w + 1

p p

t = w � 1, k = 1 and odd w 1 w + 1 w w

p p

t = w � 1 and w � k k k + w k k + 1

p

t = w � 1 and w > k > 1 k k + w k k + w

5.2 Finite Sequences

To conclude our analysis we will prove that algorithm CRFWF is (k + 1)-

competitive also for Fair-FMTP with w � k. Of course we are restricted to

the situations in which competitive on-line algorithms can exist.

Theorem 5.2.1 Algorithm CRFWF is (k+1)-competitive for Fair-FMTP with

t = w � 1, w � k and w � 2.

Proof With two active sequences CRFWF behaves as in the in�nite version,

and hence its cost is at most k + 1 times the optimal cost necessary to serve

those requests. The performance of CRFWF is the same with only one active

sequence. In any case the algorithm results (k + 1)-competitive. 2

6 Concluding Remarks

Table 1 summarizes our results about Fair-IMTP, as well as the results already

known; we assume w > 1 through the table. In the �nite model the results are

the same, except that no competitive on-line algorithm can exist if w � 3.

When the size of the cache is 1, having an even number of threads is slightly

more di�cult for on-line algorithms than the case in which the number of threads

is odd. The di�culty probably depends not only on the parity of w itself, but

on its relationship with the size of the cache. The fact that both w and k a�ect

the behavior of on-line algorithms becomes clear when we compare the results

for the two opposite situations we have considered: when k = 1 < w there is a

tight bound near to w, while if w � k on-line competitiveness is between k and

k+1. It seems that when the cache is small the adversary can take bene�t of its

decision about the order in which to serve the sequences; thus the performance

of on-line algorithms get worse when the number of sequences increases. On

the other hand, when the cache is big enough the permutation of the threads
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might have a local e�ect, and then the performance that on-line algorithms can

achieve is similar to the one observed in normal Paging.

Although we improved previous results and we closed some gaps, there are

still di�erences between current lower and upper bounds; a nice result would

be to close those gaps. We proved that any lazy algorithm achieves the on-line

lower bound if k = 1 and w is odd; we know that algorithm RRFWF is optimal

when the number of sequences is even, but it would be interesting to analyze

whether that general result is valid in this case too.

Several interesting research directions are possible. One of them is modeling

fairness restrictions in a di�erent way; perhaps alternative models allow the

existence of more exible competitive on-line algorithms. Distinct de�nitions

of competitiveness may also be considered for the in�nite problem, such as

comparing the performances of the di�erent algorithms in the limit, that is, when

the number of served requests tends to in�nity. Another interesting possibility

is to analyze randomized algorithms for these problems.

A general observation is that multi-threaded environments seem a powerful

modeling tool and a challenging research �eld.

Acknowledgments: I would like to thank Esteban Feuerstein for his encour-
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