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Abstract

This paper is devoted to the complexity analysis of a particular prop-

erty, called geometric robustness owned by all known symbolic methods

of parametric polynomial equation solving (geometric elimination). It is

shown that any parametric elimination procedure which owns this prop-

erty must necessarily have an exponential sequential time complexity even

if highly performant data structures (as e.g. the straight{line program en-

coding of polynomials) are used. The paper �nishes with the motivated in-

troduction of a new non-uniform complexity measure for zero-dimensional

polynomial equation systems, called elimination complexity.
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1 Introduction

Modern algebraic geometry started about 200 years ago as algorithmic algebraic

geometry, and, more precisely, as algorithmic elimination theory. The motiva-

tion for the creation of such a �eld was the search for methods which allow to

�nd the real solutions of a polynomial equation system. Nevertheless, the very

origin of algebraic geometry was given by the observation that real root �nd-

ing is a rather infeasible task without a previous study of the behaviour of the

complex solutions of polynomial equation systems. This observation was �rst

made by Euler and B�ezout and then extended to a general theory by a long list

of geometers of the last century. This list includes names as Jacobi, Sylvester,

Kronecker, M. Noether, Hilbert (the creator of modern commutative algebra),

Castelnuovo, Bertini, Enriques.

Despite the orientation of modern algebraic geometry toward a new struc-

tural view of the �eld, in the last twenty years a new community of algebraic

geometers doing symbolic computation splitted out of the mainstream. The

intention of this community to bring back algebraic geometry to its origin (and

to introduce also new aspects like e�cient polynomial equation solving for in-

dustrial applications) must be praised highly. On the other hand the (mainly

rewriting based) computational approach used by this community is far too sim-

ple minded for the di�cult task of e�cient, i.e. real world polynomial equation

solving. An important drawback of this approach consists in the almost total

absence of todays skill in algorithmics and data structure manipulation as well

as the unawareness of modern programming techniques coming from software

engineering. There is no place here to describe in detail the advances and weak-

nesses of symbolic computation (more precisely: computer algebra) techniques

applied to elimination theory. For an overview about rewriting based methods

(Gr�obner basis techniques) we refer to the books [20], [15], [6] (these books in-

clude also motivations and historical considerations). The state of the art in

sparse techniques can be found in [7]. Finally the seminumerical approach to

elimination theory is described in the book [3] and the surveys [13], [17], [12]

and in the research papers [11], [10] and [1].

It is well known that there exists no polynomial time geometric or algebraic

elimination procedure if dense encoding of polynomials is used as basic data

structure (see e.g. [14], [13], [17]). One may ask whether this conclusion remains

still true for elimination procedures based on the more succinct straight{line

program encoding of polynomials as fundamental data structure (see e.g. [13],

[17], [4]).

In this paper we will give a partial answer to this question. We introduce and

discuss the notion of a geometrically robust parametric elimination procedure.

The main outcome is the observation that all known parametric elimination

procedures are geometrically robust and that all geometrically robust paramet-
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ric elimination procedures must necessarily have an exponential time complexity

even if the highly performant encoding of polynomials by straight{line programs

is used (Theorem 1). Therefore a revolutionary change of mathematical theory

and algorithmics would be necessary in order to design a (possibly non-existent)

highly performant general purpose elimination procedure. The rest of the paper

is devoted to the motivated introduction of a new uniform complexity measure

for zero-dimensional polynomial equation systems, called elimination complex-

ity.

The procedures (algorithms) considered in this paper operate with division{

free arithmetic circuits as basic data structure for the representation of inputs

and outputs. In his turn such a circuit depends on certain input nodes, labeled

by indeterminates over a given ground �eld k. These indeterminates are thought

to be subdivided into two disjoint sets representing the parameters and variables

of the given circuit. The output nodes of the circuit represent polynomials in the

parameters and variables of the circuit. On the other hand the output nodes are

labeled by sign marks of the form \= 0" or \6= 0" or remain unlabeled. Thus the

given circuit de�nes by means of its labeled output nodes a system of polynomial

equations and inequations which determines in his turn a locally closed set with

respect to the Zariski topology of the (a�ne) space of parameter and variable

instances. The unlabeled nodes of the given circuit determine a polynomial map

(in fact a morphism of algebraic varieties) which is de�ned on this locally closed

set. We shall interpret the system of polynomial equations and inequations

determined by the given circuit as a parametric system in the variables of the

circuit. The same point of view is applied to the morphism determined by the

unlabeled nodes of the circuit. We say that a given parameter point �xes an

input/output instance of the procedure under consideration. Input and output

instances will also be called problem and solution instances respectively.

In this paper we shall restrict our attention to input circuits which contain

only output nodes labeled by \=0" and unlabeled output nodes and to output

circuits having all output nodes labeled by the mark \=0". Such an input cir-

cuit represents a parametric polynomial equation system de�ning an algebraic

variety and a morphism de�ned on this variety. Therefore any input circuit rep-

resents a parametric polynomial equation system de�ning an algebraic variety,

and a morphism having this variety as domain. The corresponding output cir-

cuit will always represent an algebraic variety which describes the image of the

given morphism (this image will be Zariski closed in all cases we shall consider).

All procedures we are going to consider are geometric elimination procedures

in this sense. We modelize such a procedure by a family of arithmetic networks

(arithmetic{boolean circuits, see [8], [9]). Let us observe that in principle such

a procedure may contain branchings.

We call an elimination procedure parametric if it contains no branchings
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for any input equation system which represents a (geometrically or scheme{

theoretically) 
at family of input instances.

We call an elimination procedure geometrically robust if it produces for any

input instance of a given 
at family an output circuit which depends only on

the input equation system and the input morphism but not on their circuit

representation. This means informally that a parametric elimination procedure

is geometrically robust if it produces for (geometrically or scheme-theoretically)


at families of problem instances \continuous" or \stable" solutions.

Of course this notion of geometric robustness depends on the (geometric

or scheme-theoretical) context, i.e. it is not the same for schemes or varieties.

Below we are going to explain our idea of geometric robustness in the typi-

cal situation of 
at families of algebraic varieties given by reduced complete

intersections.

Finally let us refer to the books [5], [16] and [18] as a general background

for notions of algebraic complexity theory and algebraic geometry we are going

to use in this paper.

1.1 Flat families of elimination problems

Let k be an in�nite and perfect �eld with algebraic closure

�

k and let T

1

; : : : ; T

m

;

U

1

; : : : ; U

r

; X

1

; : : : ; X

n

; Y be indeterminates over k. Let G

1

; : : : ; G

n

; F be poly-

nomials belonging to the k-algebra k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; X

1

; : : : ; X

n

]: Sup-

pose that the polynomials G

1

; : : : ; G

n

form a regular sequence in

k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; X

1

; : : : ; X

n

] de�ning thus an equidimensional subvari-

ety V := fG

1

= 0; : : : ; G

n

= 0g of the (m + r + n)-dimensional a�ne space

IA

m+r+n

over the �eld

�

k. The algebraic variety V has dimension m + r. Let

� be the (geometric) degree of V . Suppose furthermore that the morphism

of a�ne varieties � : V �! IA

m+r

, induced by the canonical projection of

IA

m+r+n

onto IA

m+r

, is �nite and generically unrami�ed (this implies that � is


at). Let ~� : V �! IA

m+r+1

be the morphism de�ned by ~�(z) := (�(z); F (z))

for any point z of the variety V . The image of ~� is a hypersurface of IA

m+r+1

whose minimal equation is a polynomial of k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; Y ] which

we denote by P . Observe that P is monic in Y and that degP � � holds.

Furthermore deg

Y

P is the cardinality of the image of the restriction of F to

the set fwg � �

�1

(w), where w is a typical point of IA

m+r

. The polynomial

P (T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; F ) vanishes on the variety V .

Let us consider an arbitrary point t = (t

1

; : : : ; t

m

) of IA

m

. For arbitrary

polynomials B 2 k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; X

1

; : : : ; X

n

] and C 2 k[T

1

; : : : ; T

m

;

U

1

; : : : ; U

r

; Y ] we denote by B

(t)

and C

(t)

the polynomials B(t

1

; : : : ; t

m

;

U

1

; : : : ; U

r

; X

1

; : : : ; X

n

) and C(t

1

; : : : ; t

m

; U

1

; : : : ; U

r

; Y ) which belong to

k(t

1

; : : : ; t

m

)[U

1

; : : : ; U

r

; X

1

; : : : ; X

n

] and k(t

1

; : : : ; t

m

)[U

1

; : : : ; U

r

; Y ] respectively.
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Similarly we denote for an arbitrary polynomial A 2 k[T

1

; : : : ; T

m

] by A

(t)

the

value A(t

1

; : : : ; t

m

) which belongs to the �eld k(t

1

; : : : ; t

m

). The polynomials

G

(t)

1

; : : : ; G

(t)

n

form a regular sequence in k(t

1

; : : : ; t

m

)[U

1

; : : : ; U

r

; X

1

; : : : ; X

n

]

and de�ne an equidimensional subvariety V

(t)

:= fG

(t)

1

= 0; : : : ; G

(t)

n

= 0g

of IA

r+n

whose degree is bounded by �. Let �

(t)

: V

(t)

�! IA

r

and ~�

(t)

:

V

(t)

�! IA

r+1

be the morphisms induced by � and ~� on the variety V

(t)

.

Then the morphism �

(t)

is �nite and 
at but not necessarily generically un-

rami�ed. Furthermore the image of ~�

(t)

is a hypersurface of IA

r+1

on which

the polynomial P

(t)

vanishes (however P

(t)

is not necessarily the minimal equa-

tion of this hypersurface). We call the equation system G

1

= 0; : : : ; G

n

= 0

and the polynomial F a 
at family of r-dimensional elimination problems de-

pending on the parameters T

1

; : : : ; T

m

. An element t 2 IA

m

is considered as a

parameter point which determines a particular problem instance. The equation

system G

1

= 0; : : : ; G

n

= 0 together with the polynomial F is called the general

instance of the given elimination problem and the polynomial P is called its

general solution.

The problem instance determined by the parameter point t 2 IA

m

is given by

the equations G

(t)

1

= 0; : : : ; G

(t)

n

= 0 and the polynomial F

(t)

. The polynomial

P

(t)

is called the solution of this particular problem instance. We call two param-

eter points t; t

0

2 IA

m

equivalent (in symbols t � t

0

) if G

(t)

1

= G

(t

0

)

1

; : : : ; G

(t)

n

=

G

(t

0

)

n

and F

(t)

= F

(t

0

)

holds. Observe that t � t

0

implies also P

(t)

= P

(t

0

)

. We

call polynomials A 2 k[T

1

; : : : ; T

m

], B 2 k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; X

1

; : : : ; X

n

]

and C 2 k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; Y ] invariant (with respect to �) if for any two

parameter points t; t

0

of IA

m

with t � t

0

the identities A

(t)

= A

(t

0

)

, B

(t)

= B

(t

0

)

and C

(t)

= C

(t

0

)

hold.

A straight-line program in k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; Y ] with parameters in

k[T

1

; : : : ; T

m

] is an arithmetic circuit in k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; Y ], say 
, mod-

elized in the following way: 
 is given by a directed acyclic graph whose internal

nodes are labeled as usual by arithmetic operations. The input nodes of 
 are

labeled by the variables U

1

; : : : ; U

r

and the nodes of 
 of indegree 0 which are

not input nodes (i.e. the parameter nodes of 
) are labeled by arbitrary el-

ements of k[T

1

; : : : ; T

m

] called parameters of 
. We call such a straight-line

program 
 invariant (with respect to the equivalence relation �) if all its pa-

rameters are invariant polynomials of k[T

1

; : : : ; T

m

]. Let us observe that in an

absolutely analogous way one may extend the notion of a straight-line program

with parameters in k[T

1

; : : : ; T

m

] and the notion of an invariant straight-line

program to arithmetic circuits de�ned in k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; X

1

; : : : ; X

n

]

or in k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

] (however we shall make almost exclusive use of

the corresponding notion for circuits in

k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; Y ]).

We are now ready to characterize in the given situation what we mean by a
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geometrically robust parametric elimination procedure. Suppose that the poly-

nomials G

1

; : : : ; G

n

and F are given by a straight-line program � in

k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; X

1

; : : : ; X

n

]. A geometrically robust parametric elimi-

nation procedure produces from the circuit � as input an invariant straight{line

program � in k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

; Y ] as output such that � represents the

polynomial P . Observe that in our de�nition of geometric robustness we did

not require that � is an invariant straight{line program because this would be

too restrictive for the modeling of real situations in computational elimination

theory. However in all known practical situations � always satis�es the fol-

lowing (weak) invariance condition: any specialization of the input variables

X

1

; : : : ; X

n

in � into arbitrary values of k transforms the circuit � in a invariant

straight{line program in k[T

1

; : : : ; T

m

; U

1

; : : : ; U

r

].

The invariance property required for the output circuit � means the fol-

lowing: let t = (t

1

; : : : ; t

m

) be a parameter point of IA

m

and let �

(t)

be the

straight{line program in k(t

1

; : : : ; t

m

)[U

1

; : : : ; U

r

; Y ] obtained from the circuit

� evaluating in t the elements of k[T

1

; : : : ; T

m

] which occur as parameters of

�. Then the straight{line program �

(t)

depends only on the particular problem

instance determined by the parameter point t but not on t itself. Said otherwise,

a geometrically robust elimination procedure produces the solution of a partic-

ular problem instance in a way which is independent of the possibly di�erent

representations of the given problem instance.

By de�nition a geometrically robust parametric elimination procedure pro-

duces always the general solution of the elimination problem under consider-

ation. In other words this means that geometrically robust parametric elim-

ination procedures do not contain branchings. Now we are going to show a

complexity result which can be paraphrased as follows: none of the known (ex-

ponential time) parametric elimination procedures can be transformed into a

polynomial time algorithm. For this purpose it is important to remark that the

known parametric elimination procedures (which are without exception based

on linear algebra as well as on comprehensive Gr�obner basis techniques) are all

geometrically robust for 
at families of elimination problems.

The invariance property of these procedures is easily veri�ed in the situation

of the 
at family of r-dimensional elimination problems introduced before. One

has only to observe that all known elimination procedures accept the input

polynomials G

1

; : : : ; G

n

; F in their dense or sparse coe�cient representation or

as evaluation black box with respect to the variables U

1

; : : : ; U

r

; X

1

; : : : ; X

n

.

1.2 A particular 
at family of 1-dimensional elimination

problems

Let S; T; U;X

1

; : : : ; X

2n

; Y be indeterminates over Q . We consider the fol-

lowing 
at family of one-dimensional elimination problems depending on the
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parameters S and T . Let

G

1

:= X

2

1

�X

1

; : : : ; G

n

:= X

2

n

�X

n

;

G

n+1

:= X

n+1

�

X

1�k�n

2

k�1

X

k

; G

n+2

:= X

n+2

�X

2

n+1

; G

2n

:= X

2n

�X

2

2n�1

and

F := (1 + S

Y

1�i�n

(T

2

i�1

+X

n+i

))

Y

1�j�n

((U

2

j�1

� 1)X

j

+ 1):

We interpret G

1

; : : : ; G

2n

and F as elements of the polynomial ring

Q [S; T; U;X

1

; : : : ; X

2n

]. Thus we have m := 2 and r := 1 in this situation.

It is clear from this representation that the polynomials G

1

; : : : ; G

2n

and

F can be evaluated by a straight{line program � in Q [S; T; U;X

1

; : : : ; X

2n

] of

nonscalar length O(n) (which satis�es the invariance condition for input circuits

mentioned before). The degree in X

1

; : : : ; X

2n

of the polynomials G

1

; : : : ; G

2n

and F is bounded by 2n. The variety V := fG

1

= 0; : : : ; G

n

= 0g is the

union of 2

n

a�ne linear subspaces of IA

3+2n

of the form IA

3

� f�g, where � is

a solution of the equation system G

1

= 0; : : : ; G

2n

= 0 in ZZ

2n

. The morphism

� : V ! IA

3

is obtained by gluing together the canonical projections onto IA

3

of these a�ne linear spaces. Obviously the morphism� is �nite an generically

unrami�ed. In particular � has constant �bers. Let (l

1

; : : : ; l

n

) be a point

of f0; 1g

n

and let l :=

P

1�j�n

l

j

2

j�2

be the integer 0 � l < 2

n

with bit

representation l

n

l

n�1

: : : l

1

. Put l

n+1

:= l; l

n+2

:= l

2

; : : : ; l

2n

:= l

2

n�1

. One

veri�es immediately that with the convention 0

0

:= 1 the identity

F (S; T; U; l

1

; : : : ; l

2n

) = U

l

(1 + S

X

0�p;q<2

n

p+q=2

n

�1

T

p

l

q

)

holds. Therefore for any point (s; t; u; l

1

; : : : ; l

2n

) 2 V with l :=

P

1�j�n

l

j

2

j�1

we have

F (s; t; u; l

1

; : : : ; l

2n

) = u

l

(1 + s

X

0�p;q<2

n

p+q=2

n

�1

t

p

l

q

):

From this we deduce easily that the elimination polynomial P 2 Q[S; T; U; Y ]

we are looking for is

P :=

Y

0�l<2

n

0

B

@

Y � U

l

(1 + S

X

0�p;q<2

n

p+q=2

n

�1

T

p

l

q

)

1

C

A

:
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This polynomial has the form

P = Y

2

n

�

0

B

@

X

0�l<2

n

U

l

(1 + S

X

0�p;q<2

n

p+q=2

n

�1

T

p

l

q

)

1

C

A

Y

2

n

�1

+ lower degree terms in Y:

Suppose now that there is given a geometrically robust parametric elimina-

tion procedure. This procedure produces from the input circuit � an invariant

straight{line program � in Q [S; T; U; Y ], which evaluates the polynomial P .

Recall that the invariance of � means that the parameters of � are invariant

polynomials of Q [S; T ], say A

1

; : : : ; A

N

.

Let L(�) be the total and L(�) the non-scalar length of the straight{line

program �. We have L(�) � L(�) and N � (L(�)+3)

2

. Let Z

1

; : : : ; Z

N

be new

indeterminates. From the graph structure of the circuit � we deduce that there

exist for 0 � l < 2

n

polynomials Q

l

2 ZZ[Z

1

; : : : ; Z

N

] such that Q

l

(A

1

; : : : ; A

N

)

is the coe�cient of the monomial U

l

Y

2

n

�1

of P . This means that we have for

0 � l < 2

n

the identity

Q

l

(A

1

; : : : ; A

N

) = 1 + S

X

0�p;q<2

n

p+q=2

n

�1

T

p

l

q

: (1)

Observe now that for any two values t; t

0

2 IA

1

the points (0; t) and (0; t

0

)

of IA

2

are equivalent (in symbols: (0; t) � (0; t

0

)). From the invariance of

A

1

; : : : ; A

N

we deduce therefore that A

j

(0; t) = A

j

(0; t

0

) holds for 1 � j � N .

This means that �

1

:= A

1

(0; T ); : : : ; �

N

:= A

N

(0; T ) are constant values of Q .

From identity (1) we deduce that Q

l

(�

1

; : : : ; �

N

) = 1 holds for any 0 � l < 2

n

.

Let us consider the morphisms of a�ne spaces � : IA

2

�! IA

N

and  :

IA

N

�! IA

2

n

given by � := (A

1

; : : : ; A

N

) and  := (Q

l

)

0�l<2

n

.

Observe that

 � � = (Q

l

(A

1

; : : : ; A

N

))

0�l<2

n

= (1 + S

X

0�p;q<2

n

p+q=2

n

�1

T

p

l

q

)

0�l<2

n

holds. Furthermore let us consider the points � := (�

1

; : : : ; �

N

) 2 IA

N

and ! := (1; : : : ; 1) 2 IA

2

n

. From our previous considerations we deduce the

identities

( � �)(0; T ) = (Q

l

(A

1

(0; T ); : : : ; A

N

(0; T )))

0�l<2

n

=

= (Q

l

(�

1

; : : : ; �

N

))

0�l<2

n

= (Q

l

(�))

0�l<2

n

= (1; : : : ; 1) = !:
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In particular we have  (�) = !. We analyze now the local behaviour of the

morphism  in the point � 2 IA

N

. Let E

�

and E

!

be the tangent spaces of

the points � and ! belonging to IA

N

and IA

2

n

respectively. Let us denote the

di�erential of the map  in the point � by (D )

�

: E

�

�! E

!

. Taking the

canonical projections of IA

N

and IA

2

n

as local coordinates in the points � and

! respectively, we identify E

�

with IA

N

and E

!

with IA

2

n

.

For any value t 2 Q we consider the parametric curves 


t

: IA

1

�! IA

N

and �

t

: IA

1

�! IA

2

n

de�ned by




t

:= (A

1

(S; t); : : : ; A

N

(S; t)) and �

t

:= (1 + S

X

0�p;q<2

n

p+q=2

n

�1

t

p

l

q

)

0�l<2

n

respectively. Observe that  � 


t

= �

t

and that 


t

(0) = �, �

t

(0) = ! holds

(independently of the value t).

We consider 


t

and �

t

as one-parameter subgroups of IA

N

and A

2

n

respec-

tively.

Now �x t 2 Q and consider




0

t

(0) = (

@A

1

@S

(0; t); : : : ;

@A

N

@S

(0; t)) and �

0

t

(0) = (

X

0�p;q<2

n

p+q=2

n

�1

t

p

l

q

)

0�l<2

n

:

We have 


0

t

(0) 2 E

�

and �

0

(0) 2 E

!

. Moreover one sees easily that

(D )

�

(


0

t

(0)) = �

0

t

(0) = (

X

0�p;q<2

n

p+q=2

n

�1

t

p

l

q

)

0�l<2

n

holds. Choosing now 2

n

di�erent values t

0

; : : : ; t

2

n

�1

of Q we obtain 2

n

tangent

vectors v

l

:= 


0

t

l

(0) of E

�

with 0 � l < 2

n

. Let M be the 2

n

� 2

n

matrix whose

row vectors are (D )

�

(v

0

); : : : ; (D )

�

(v

2

n

�1

). Observe that M has the form

M = (t

2

n

�p�1

h

)

0�h;p<2

n

� (l

q

)

0�l;q<2

n

:

ThusM is the product of two non-singular Vandermonde matrices and there-

fore itself non-singular. This means that in E

!

the tangent vectors (D )

�

(v

0

);

: : : ; (D )

�

(v

2

n

�1

) are linearly independent. Hence in E

�

the tangent vectors

v

0

; : : : ; v

2

n

�1

are linearly independent too.

Therefore we have 2

n

� dimE

�

= N which implies 2

n

� N � (L(�) + 3)

2

.

From this we deduce the estimation 2

n

2

� 3 � L(�) � L(�).

We have therefore shown that any geometrically robust parametric elimina-

tion procedure applied to our 
at family of one-dimensional elimination problems
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produces a solution circuit of size at least 2

n

2

� 3 i.e. a circuit of exponential

size in the length O(n) of the input.

The discussion of the previous example shows that the objective of a polyno-

mial time procedure for geometric (or algebraic) elimination can not be reached

following a evolutionary way, i.e. constructing improvements of known elimina-

tion methods.

It was fundamental in our argumentation above that our notion of geometri-

cally robust parametric elimination procedure excludes branchings in the output

program. This suggests that any polynomial time elimination algorithm (if

there exists one) must have a huge topological complexity. Thus hypothetical

e�ciency in geometric elimination seems to imply complicated casuistics.

This idea is worth to be discussed further. One may also ask whether ad-

mitting divisions in the output circuit helps to lower its minimal size. To some

limited extent divisions in the output circuit are compatible with our proof

method. However one has to take care of the way how these divisions may

a�ect the dependence of the coe�cients of the output polynomial on the pa-

rameters of the circuit representing it.

The formulation of a condition which guarantees the generalization of our

method to output circuits with divisions seems to be cumbersome. In our ex-

ample one has to make sure that even in presence of divisions for any value

t 2 Q the one-parameter subgroup 


t

still converges to one and the same point

of IA

N

.

Finally let us mention that our proof method above contributes absolutely

nothing to the elucidation of the fundamental thesis of algebraic complexity

theory, which says that geometric elimination is non-polynomial in the (unre-

stricted) non-uniform complexity model. Similarly no advance is obtained by

our method with respect to the question whether P

C

6= NP

C

holds in the BSS

complexity model, see [3, Chapter 7].

In fact our contribution consists only in the discovery of a very limiting

uniformity property (geometric robustness) present in all known elimination

procedures. This uniformity property inhibits the transformation of these elim-

ination procedures into polynomial time algorithms. We resume the conclusions

from the complexity discussion of our example in the following form:

Theorem 1 For any n 2 IN there exists a one-dimensional elimination problem

depending on one parameter and 2n + 1 variables, having input length O(n)

such that the following holds: any geometrically robust parametric elimination

procedure which solves this problem produces an output circuit of size at least

2

n

2

� 3 (i.e. of exponential size in the input length).
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2 On the complexity of geometric elimination

procedures in the unrestricted non-uniform

model

Let us now analyze from a general non-uniform point of view how the seminu-

merical elimination procedure designed in [11] and [10] works on a given 
at

family of zero-dimensional elimination problems.

Let T

1

; : : : ; T

m

; X

1

; : : : ; X

n

; Y be indeterminates over the ground ground

�eld k and let G

1

; : : : ; G

n

; F be polynomials belonging to the k-algebra

k[T

1

; : : : ; T

m

; X

1

; : : : ; X

n

]. Let d := maxfdegG

1

; : : : ; degG

n

g and suppose that

G

1

; : : : ; G

n

and F are given by straight{line programs in k[T

1

; : : : ; T

m

X

1

; : : : ; X

n

]

of length L andK respectively. Suppose that the polynomialsG

1

; : : : ; G

n

form a

regular sequence in k[T

1

; : : : ; T

m

; X

1

; : : : ; X

n

] de�ning thus an equidimensional

subvariety V = fG

1

= 0; : : : ; G

n

= 0g of IA

m+n

of dimension m.

Assume that the morphism � : V �! IA

m

, induced by the canonical pro-

jection of IA

m+n

onto IA

m

is �nite and generically unrami�ed. Let � be the

degree of the variety V and let D � � be the degree of the morphism �. Fur-

thermore let ~� : V �! IA

m+1

be the morphism of a�ne varieties de�ned by

~�(z) := (�(z); F (z)) for any point z of V . Let P 2 k[T

1

; : : : ; T

m

; Y ] be the

minimal polynomial of the image of ~�. The polynomial P is monic in Y and

one sees immediately that degP � � degF and deg

Y

P � D holds. Let us write

�

�

:= deg

T

1

;:::;T

m

P .

Let us consider as Algorithm 1 and Algorithm 2 two non-uniform variants

of the basic elimination method designed in [11] and [10].

� Algorithm 1 is represented by an arithmetic network of size K�

O(1)

+

L(nd�)

O(1)

where � is the degree of the equation systemG

1

= 0; : : : ; G

n

=

0 (observe that always � � � � degG

1

� � � degG

n

holds). The output is

a straight{line program �

1

in k[T

1

; : : : ; T

m

; Y ] of length (K + L)(n�)

O(1)

which represents the polynomial P .

� Algorithm 2 starts from the geometric description of a unrami�ed param-

eter (and lifting) point t = (t

1

; : : : ; t

m

) of k

m

which has the additional

property that the image of F restricted to the set ftg� �

�1

(t) has cardi-

nalityD

�

= deg

Y

P . The algorithm produces then a straight{line program

�

2

in k[T

1

; : : : ; T

m

; Y ] of length O(KD

O(1)

log �

�

)+�

O(1)

�

= K(� degF )

O(1)

which represents the polynomial P .

We observe that K�

O(1)

is a characteristic quantity which appears in the

length of both straight{line programs �

1

and �

2

. We are going now to analyze

the question whether a complexity of type K�

O(1)

is intrinsic for the elimination

problem under consideration.
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In the next subsection we are going to exhibit an example of a particular

zero-dimensional elimination problem for which the quantity K� appears as a

lower bound for the nonscalar size of the output polynomial in the unrestricted

non-uniform complexity model.

2.1 A particular 
at family of zero-dimensional elimina-

tion problems

Let S; T

1

; : : : ; T

�

; X; Y be indeterminates over Q and let

G :=

Q

1�l��

(X � T

l

) and F := SX

2

K

. Let V := fG = 0g be the hypersurface

of IA

�+2

de�ned by the polynomial G and let � : V �! IA

�+1

be the �nite,

generically unrami�ed morphism induced by the canonical projection of IA

�+2

onto IA

�+1

.

Observe that � is the degree of the hypersurface V of IA

�+2

and of the

morphism � (in fact V is the union of � distinct hyperplanes of IA

�+2

).

The polynomials G and F have a nonscalar complexity � and K +1 respec-

tively. They represent a 
at family of zero-dimensional elimination problems

with m := � + 1; n := 1; degV = � and deg � = � (see Subsection 1.1). The

general solution of this elimination problem is represented by the polynomial

P :=

Y

1�l��

(Y � ST

2

K

l

) = Y

�

� Y

��1

S

X

1�l��

T

2

K

l

+ higher degree terms in S

which belongs to Q[S; T

1

; : : : ; T

�

; Y ]. Let � be straight{line program of non-

scalar length L(�) in k[S; T

1

; : : : ; T

�

; Y ] which computes the polynomial P . We

transform the circuit � into a straight{line program �

�

in Q [T

1

; : : : ; T

�

] of non-

scalar length L(�

�

) � 3L(�) which computes the polynomial R :=

P

1�l��

T

2

K

l

.

This can be done as follows: �rst we derive the straight{line program � with

respect to the variable S and then we specialize S and the variable Y into the

values 0 and 1 respectively.

Analyzing the complexity of the polynomial R by means of Strassen's degree

method as in [2], [19] we �nd that L(�

�

) � (K � 1)� holds. This implies

L(�) �

1

3

(K � 1)� = 
(K�).

Unfortunately the meaning of the parameter � is ambiguous: � is the degree

of the variety V and the degree of the morphism � as well as the nonscalar

complexity of the polynomial G. Nevertheless our example shows that any

optimal elimination procedure which produces the general solution of a given


at family of zero-dimensional elimination problems has an inherent complexity

which depends linearly on the nonscalar length of the polynomial which de�nes

the projection we are considering. The factor of proportionality of this linear

dependence appears as an invariant of the equational part of our elimination
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problem. For the moment we are not able to interpret unambiguously this

factor of proportionality. It is always bounded from above by a polynomial

function of the straight{line program size, of the number of variables eliminated

and of the degree of the input variety and appears in some cases as bounded

from below by a quantity which may be interpreted alternatively as the degree of

the input system or as its nonscalar length. This leads us to the following notion

of elimination complexity of a given 
at family of zero-dimensional elimination

problems. This notion is the subject of the next subsection.

2.2 The elimination complexity of a zero-dimensional poly-

nomial equation system

Let T

1

; : : : ; T

m

; X

1

; : : : ; X

n

; Y be indeterminates over k and let G

1

; : : : ; G

n

2

k[T

1

; : : : ; T

m

; X

1

; : : : ; X

n

] be polynomials forming a regular sequence in

k[T

1

; : : : ; T

m

; X

1

; : : : ; X

n

]. Let V = fG

1

= 0; : : : ; G

n

= 0g be the equidimen-

sional variety de�ned by the polynomials G

1

; : : : ; G

n

and let � : V �! IA

m

be

the morphism of a�ne varieties induced by the canonical projections of IA

m+n

onto IA

m

. Suppose that � is �nite and generically unrami�ed and observe that

V has dimension m.

For any polynomial F 2 k[T

1

; : : : ; T

m

; X

1

; : : : ; X

n

] we consider the 
at family

of zero-dimensional elimination problems given by the equations G

1

= 0; : : : ;

G

n

= 0 and the polynomial F . Let P

F

2 k[T

1

; : : : ; T

m

; Y ] be the general

solution of this problem. Let L(F ) and L(P

F

) be the nonscalar complexity of

the polynomials F and P

F

respectively. Observe that the set of values

N

G

1

;:::;G

n

:= f

L(P

F

)

L(F )

;F 2 K[T

1

; : : : ; T

m

; X

1

; : : : ; X

n

]g

is bounded by a quantity which depends polynomially on the degree of V

and the number n of variables to be eliminated (compare this with the length

of the straight{line program �

1

in Algorithm 1 in this section).

We de�ne now the supremum supN

G

1

;:::;G

n

as the elimination complexity

of the equation system G

1

= 0; : : : ; G

n

= 0. In the example of the previous

subsection the nonscalar straight{line program length of the equational part of

the input system equals the quantity degV and this quantity represents a lower

bound for the elimination complexity of the given equation system.
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