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Abstract

For the development of safety-critical reactive systems, proving cor-

rectness is unavoidable. Here we describe some research issues on using

and combining formal methods. Using the Electre reactive language we

illustrate a technique to the design of a sound compiler with the Coq

theorem prover. Based on the same source language semantic model,

we present the outlines of a method to verify correctness claims with

the spin model checker.

Keywords: Compiler design, Coq theorem prover, Electre reactive lan-

guage, program proof, program extraction, model checking, Spin model

checker.



P. Arg�on et al., Issues in Using Formal Methods, EJS, 1(1) 52-75 (1998) 53

1 Introduction

Nowadays, for the development of safety-critical reactive systems

3

, estab-

lishing correctness is a crucial task, if it is not even required by security

standards. Nevertheless, correctness is a relative concept, and we must dis-

tinguish at least two di�erent aspects: the speci�cation correctness, and the

construction correctness of the system from its speci�cation. The �rst as-

pect cannot be entirely formalized, it will always remain a \gap" between the

problem itself, and the problem speci�cation (this point is out of the scope

of this paper). On the other hand, strong results and techniques are now

available to ensure the correctness of the construction (or the derivation) of

a system from its formalized speci�cation. We can mention: research on se-

mantics of programming languages, automata theory, development of ad hoc

logics, model checking, and recently, implementation of powerful proof as-

sistants and automatic theorem provers through constructive higher-order

logic. It seems clear that, current research challenge is to combine these

techniques in order to tackle the complexity of real concurrent systems.

In this paper we present some results and issues on the formalization of

the Electre [CR95, Arg95] language semantic model using the Coq [CCF

+

95]

logical meta-language, and an application to the veri�cation of temporal

claims using spin [Hol97]. We claim that development of such formalized

framework is a suitable basis for the formalization of most of the development

stages of reactive systems providing rigorous foundations: from speci�cation

language design through speci�ed system properties veri�cation.

Organization of the paper. We start with a brief recall of the Electre

reactive language in Sect.2. In Sect.3 the Coq theorem prover is introduced

and we sketch the Electre compiler design and certi�cation with Coq. In

Sect.4 we give the outlines of the implementation mechanism of Electre pro-

grams into promela/spin [Hol91, Hol97]. Sect.5 presents some research

issues on using this model to combine the Coq theorem prover engine and

the Spin [Hol91] model checker, to verify properties on unbounded Electre

programs. Then, in Sect. 6 we show a Spin implementation of the readers-

writer problem modeled in Electre, in which we verify safety and liveness

properties. Conclusions and further work are presented Sect.7.

3

Belong to this category; embedded systems in avionics and trains, some industrials

controllers, etc.
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Remark: The aim of this paper is to give a survey on the utilisation of

formal methods to the desing and validation of a reactive system. The reader

interested on a particular stage of this development may refer to the papers

cited in each section.

2 Overview of the Electre language

Electre is a language for describing the scheduling of tasks with regard to

events in reactive applications programming. Roughly, a reaction of an

Electre program to the environment (the history of the events that have

occurred up until now) is to \rewrite" itself in the part of the program

which is left to be executed. This arises at each event occurrence.

Then, this remainder of a program is the feature of one of the states

in the derived labeled transition system which is the execution model of the

initial program. In this way, Electre is a reactive language since the program

rewriting implies changes on the tasks status: some are to be run, others

suspended or stopped, according to the event occurrences. These changes

are the output of a reaction which is identi�ed with a transition in the

automaton.

The formal semantics of the language is such that it has been possible

to prove that each program can be compiled into a unique transition system

[CR95].

Basic components. Tasks stand for actions whose duration is �nite but

not null. They refer to sequences of executable code.

Indeed, we are not concerned with the action itself but rather with the

three main featuring transitions around a lengthing action : start (or re-

sumption), preemption, completion.

Moreover, it becomes easy to add properties to the tasks so as to give

some particular behavior speci�cations, e.g.: \the task would never be pre-

empted" or else \restart the task at the beginning rather than resume it at

the point where it was preempted".

Event is the second type of structured entity Electre handles. It is linked

with software or hardware signals in order to deal with their multiple occur-

rences. It acts as a clock ticking at unpredictable instants.

As it was already mentioned, the event is the distinctive trigger of one

transition. Nevertheless, a speci�c issue about events is that, since the

instants of occurrences are unpredictable, it may happen that some events
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occur when they must not be treated immediately, but they have to be

memorized in order to be taken into account later. For that reason, the

model we use is accurately a Fifo labeled transition system.

As a matter of fact, the occurrence of an event leads either to its mem-

orization, or to the immediate launching of an action.

Obviously, properties may also be assigned to events, e.g.: \no more than

one occurrence of the event has to be memorized" or else \no occurrence of

the event has to be memorized" (which means the event is 
eeting).

Putting together tasks and events. Events \schedule" the preemption

and activation of tasks. These are the main operators of the language and

they make it possible to compose intricated behavior structures. For ex-

ample, consider a very simple program p as: A await e:B (where A and B

stand for tasks and e for an event). Then, as soon as e occurs, the program

rewrites in B, and the reaction is <preempt A, launch B>. This is expressed

by the following rules:

e ` `A await e:B'

<preempt A, launch B>

� `B'.

And the next reaction is:

end

B

` `B'

<end B>

� nil

where nil means that the program is �nished.

The semantics of the language is made up of these rules which are ap-

plied structurally on a program in order to compile it. Actually, the rules

are conditional since several things may happen in a given state. For exam-

ple, according to the individual behaviors of their components (programs p1

and p2), there are four possible rules to apply when dealing with the parallel

program p= p1 || p2. Two of these rules are given below (the other two

rules being the symetric ones with respect to p2):

e ` p1

hx

1

i

� nil ^ e ` p2

hx

2

i

� p'2

e ` p1 || p2

hx

1

[ x

2

i

� p'2

(1)

e ` p1

hx

1

i

� p'1 ^ e ` p2

hx

2

i

� p'2

e ` p1 || p2

hx

1

[ x

2

i

� p'1 || p'2

(2)

All the operators of the Electre language are not listed in this paper but

the reader may refer to [CR95] to know them.
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3 Certi�ed Compiler Construction with Coq

The Coq theorem prover. The Coq system is a proof assistant for higher-

order logic, based on an extension of the Calculus of Constructions with

inductive types. We distinguish three main aspects of the system:

� the logical language, in which we write axioms and speci�cations in

order to build theories,

� the proof assistant, which allows to develop proofs of speci�cations

interactively applying tactics, and

� the program extractor, which synthesizes caml-programs from the con-

structive proof of the speci�cation.

This environment can be used both as a logical framework for developing

machine checked mathematical proofs, and as a programming environment

for developing certi�ed programs. For our work, we stress the latter aspect.

The next paragraph details program certi�cation process, by introducing

the Coq devoted tactic.

In theory, we are able to synthesize a functional program from the con-

structive part of a speci�cation proof, in accordance with the Curry-Howard

isomorphism.

The work of C.Parent [Par95] de�nes the notion of weaker extraction

function and proves that this function is invertible under certain constraints.

The point is to give a speci�cation and a functional term \realizing" this

speci�cation. Then, in accordance with the inversibility of the extraction

mechanism, it is possible to take advantage of the information encoded into

the functional assertion, to achieve the speci�cation proof. Enriched with

logical annotations the asserted function is viewed as a pre-built proof. An-

notation introduces in a functional term a logical assertion that will be used

for the proof. By this mechanism, annotations add, to the function, the log-

ical part which is needed for the proof and which cannot be automatically

retrieved. The specialized Coq tactic, named Program all, is based on these

theoretical results.

Language Semantic Model. We start with a deep embedding [Mel96] of

the Electre language into the Coq meta-language (i.e. a Coq model of the

Electre syntax and semantics). The semantics (given as SOS rules) de�ne the

allowed transition steps of any program: given any program and input event,
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application of the semantic rules determines the output events generated by

the program reaction and a new program to handle subsequent input events.

Then, the idea is to encode SOS rules into a Coq predicate. The rules

are encoded through an inductively de�ned set EleSem, each rule being

transformed into a set constructor. A transition e ` p � p', hemi is valid,

if and only if the Coq term (EleSem e p p' hemi) can be proven correctly

constructed. Note that in Coq context, as in any intuitionistic logical frame-

work, \true" means \e�ectively constructed".

Correctness criterion. The predicate EleSem, becomes our correctness

criterion in the following sense: if T is the constructed automaton (by com-

pilation) of program p, all transitions of T must make true the predicate

EleSem, and each tuple (e, p, p', hemi) making true the predicate is in

T . Both conditions are needed to ensure respectively soundness and com-

pleteness of the constructed automaton. The reader interested in the details

of this proof, may refer to the paper [AMR96].

Certi�cation. The above criterion is translated into a Coq theorem (named

Compiler) which speci�es, for any Electre program the equivalent automa-

ton. In order to prove this theorem, we associate to this speci�cation, an

annotated functional term. This functional term computes the automaton

which complies with the stated speci�cation.

While proving the Compiler theorem, the Program all tactic generated

several logical subgoals, which were easily solved by the user.

Compiler Extraction. In addition, Coq o�ers the possibility to real-

ize all proven functions in a ML-like functional programming language,

caml [MM92]. Hence, all the structures we use are synthesized in their

corresponding caml type de�nitions, and the functions are expanded; this

\kernel" can be enhanced into an e�ective Electre compiler.

4 Implementing Electre with Spin/Promela

The Spin model checker and its speci�cation language: Promela.

spin is a generic veri�cation system that supports the design and veri�cation

of asynchronous process systems [Hol97], developed by Gerard Holzmann at

Bell Laboratories.

spin tool provides:
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� a speci�cation language named promela (PROcess MEta LAnguage),

� a concise notation for expressing correctness requirements (assertions,

progress-labels, etc.); including temporal claims written in standard

ltl,

� an optimized stand-alone model checker generator for establishing cor-

rectness claims.

It also provides a graphical front-end named Xspin which includes an

interactive simulator. Simulation can be randomic, steered by the user, or

steered by a counterexample trace generated while verifying a correctness

claim.

A promela speci�cation consists of one or more process templates de-

�ned using constructs based on the guarded command language CSP with

a C-like syntax. Process templates can be dynamically instantiated and

can communicate through message channels. Communications can be de-

�ned to be synchronous (by rendez-vous) or asynchronous (bu�ered message

passing). Each process is translated into a �nite automaton, and the result-

ing global system is obtained by computing an asynchronous interleaving

product of automata.

To perform veri�cation, spin computes on-the-
y the B�uchi automaton

resulting from the synchronous product of the claim

4

and the global system:

then if the language accepted by this automaton is empty, this means that

the original claim is not satis�ed for the given system.

All these features makes spin adapted to the model and the formal ver-

i�cation of temporal properties of software systems. In the next section we

present the outlines of the promela/spin implementation of Electre pro-

grams.

Implementing Electre. Electre programs are implemented in promela

by associating a generic process module to each module, a process Queue

to the Fifo-list, a non-deterministic process Environment generating the

events, and synthesizing a process Controller from the source program,

as explained below. Fig.1 shows the communication diagram between pro-

cesses. The two side arrow means a double-way communication channel.

Only the channels between the controller and the modules are synchronous,

because the controller must know the exact internal state of each module.

4

Any ltl formula can be translated into a B�uchi automaton.
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Figure 1: Communication diagram

The generic process module models the three possible states in which each

module can be: Terminated, Activated (or running), or Interrupted.

The synthesis of process Controller is based on the compilation of

Electre programs into �nite automata (see Sect.2). Every state of the �nite

automata resulting from the compilation of an Electre program, appears as a

\state label" in the Controller process. The structure of a controller state

is a list of (guarded) reception commands.

The Fig.2 presents the transitions from state 7 of the automata corre-

sponding to the example program of Sect.6, and an excerpt of the resulting

code of the Controller. For an explanation of the notation, and the whole

promela program listing, see appendix A.

Process Queue obeys to the same synthesis principles; the standard se-

mantics of a Fifo-list is implemented as a 3 state automata. Initially, the

queue is waiting for an event (\pushing" action), or waiting for a requesting

(\poping" action) from the controller. The queue itself is a vector, its actual

size being parametrized by the user.

As a conclusion, we notice that our implementation is very close to the

execution model.
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1 : St7:

2 : do

3 : ::queue!CTR(REQ);

4 : queue?CTR(x);

5 : if

6 : ::(x==EMY)-> break

7 : ::(x==wff)-> queue!CTR(YES);

8 : c_L1!Int;

9 : c_L2!Int;

10 : c_W!Act;

11 : goto St3

12 : ::else -> skip

13 : fi

14 : od;

15 : do

16 : ::c_L1?end -> goto St5

17 : ::c_L2?end -> goto St6

18 : ::env?w -> queue!CTR(SND);

19 : queue!NORM(l2ff);

20 : queue!NORM(l1ff);

21 : queue!CTR(ESD);

22 : c_L1!Int;

23 : c_L2!Int;

24 : c_W!Act;

25 : goto St3

26 : od

Figure 2: Example of Controller synthesis
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5 Combining Theorem Proving and Model Check-

ing

On the one hand, model checking techniques are limited to �nite systems

5

(in practice limited to \not too big" �nite systems). Its main advantage is

to be fully automatic, with minimal user interaction. A model checker an-

swers \yes"or \no"; with sometimes a counterexample. On the other hand,

theorem provers can deal with in�nite structures and prove properties about

them using structural induction, but requires user interaction at each proof

step. Even if automatic high-level tactics exist, the user must intimately

know underlying logical mechanisms to actually use them.

In this section we show how the Electre semantic model used in Sect.3

can be used to combine the Coq theorem prover with a model checker (Spin

for example), in order to prove safety or liveness properties using a linear

time temporal logic (ltl).

We recall that the Electre execution model is Fifo-Automata (cf. Sect1).

Consequently, the main Electre veri�cation problem comes from the possible

unbounded growth of Fifo-list (where events are stored while waiting to be

taken into account by the scheduler).

Dealing with a potentially in�nite Fifo-list. The idea is to abstract

in�nite objects, i.e. to map in�nite structures into �nite ones [CGL94].

Even if the abstraction may depend on the property that we want to prove,

some classes of abstractions concerning the Fifo-list may be automatically

chosen.

An example of such a morphism mapping is given in Fig.3; an unbounded

queue of events e is mapped into a three elements set. Using such an ab-

straction, we successfully prove liveness claims in several examples.

Soundness of veri�cation is ensured by the fact that whenever a formula

holds in the abstract system, it also holds in the concrete system. More for-

mally, if we note C the concrete system, A the abstract one, and ' property

to be proved; abstraction mapping must ensure the following relation:

A j= ') C j= '

Obviously, the converse is false: although the property holds in the con-

crete system, there might not be an abstraction such that the property holds

in the abstract system (or the user may not �nd it).

5

Using symbolic representation for the space of states, this technique can be extended

to a certain class of in�nite systems [HNSY92].
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Figure 3: Example of morphism mapping

Stating mapping soundness. Since ltl formulas are interpreted over

all possible automata behaviors, it su�ces to show that every concrete be-

havior has a corresponding abstract one. The mapping plays the role of

\one half" Milner's bisimulation [Mil89]. The above property can be proved

by structural induction over the formula.

We can depict the veri�cation process of a property ' for the concrete

system C,on the following steps:

1. proving that the mapping is an morphism (by structural induction

over the formula), with the theorem prover (Coq),

2. proving ' for the abstract system (in the general case, assuming some

extra hypothesis) using the model checker (spin),

3. and proving that assumptions on the abstract system (used in previous

point) holds on the concrete system too.

Last condition generally has to be checked with a theorem prover.

We can formally prove that the above conditions allows us to state that

the concrete system veri�es the property.

6 S p in veri�cation example

In this section we introduce our Spin implementation of Electre by means of

the well-known example of the readers-writers. We can model this example

with the following Electre program:

loop

await

f l1:L1 k l2:L2 g

or

w:W

end loop
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This program models the variant in which writer (noted W) has a priority

over readers (noted L1 and L2). Lower case labels; l1, l2 and w model

requests for reading by reader 1 or 2, and for writing respectively.

Using our Electre to spin compiler we produce the promela program

implementation presented appendix A. As explained in Sect.4, the Fifo-

list is implemented as independent process (noted Queue), and the process

Environment produces undeterministically events l1, l2 or w. In our ex-

ample, each instantiation has its own name and its own message channel to

communicate with the Controller process.

6.1 Checking safety and liveness properties

The Spin model checker is designed to deal with ltl formulae compatible

with partial order reductions.

Safety. The main safety property we want to check is: never a writer will

write while one or two readers are reading.

In our model, we translate this sentence into the formula:

2: (((state L1 == Act) _ (state L2 == Act))

^(state W == Act))

This property is successfully checked by Spin.

Liveness. As in the general case, checking liveness properties is a bit

harder. An interesting liveness property to check is: every request for reading

is eventually satis�ed.

In ltl is written:

2((var l1 == true) ! 3(state L1 == Act))

To understand the formula we must note that the boolean variable

var l1 is false if an event l1 has not arisen or if it arose, it was \con-

sumed". In the Electre context, we say that an event is consumed if the

module activated by this event is terminated (see in appendix A, the code

of module L1: in state Act when it terminates the variable var l1 is reset

to false). Naturally, process Environment sets variable var l1 to true when

generating a l1 event.

When we �rst tried to check the above formula, we failed and Spin shows

us a path in which the event l1 is followed by the event w. The former

activates module L1, then the latter interrupts it and launches the writer
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W. Then, a cycle violating the property is shown where the environment

produces event l1 and the writer never ends! This simple counter-example

shown us that our implementation do not respect the Electre hypothesis:

All modules must have a �nite execution. To solve this problem we added a

\progress" labels, to force the checker to eliminate non-progress cycles, and

the property was eventually proved.

The reader can �nd another explanation of the correctness proof with

spin of the reader-writers example, using a morphism abstraction, in the

paper [Arg98].

7 Conclusion

We have shown in Sect.3 how to exploit the semantic model of the source

and target language to ensure compilation correctness. We think that this

is an interesting application of theorem provers based on constructive logic.

Moreover, when the language is being enriched with a new operator, to-

gether with its semantic rules, the new compiler can be derived from the

previous one, according to some identi�ed transformations. This system

has been achieved and experimented with. Indeed, it provides a convenient

tool to create new constructions, or to create custom-sized compilers for the

language.

Furthermore, Sect.5 sketches a general methodology for the application

of the semantic model to the proof of safety or liveness properties with ltl.

The goal is to give techniques to deal with unbounded systems by means of

abstractions. The whole theory formalization and its practical application

are still in progress.
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A S p in implementation example

In this appendix we give the complete promela program correspondig to the ex-

ample used in Sect.6. First, we explain some of the notations. For the promela

syntax, refer to [Hol91].

Notation and remarks. The de�ned type (noted mtype) encodes the message

constants used for the communication between the Controller and the Queue.

Messages have the structure: command(argument), see the de�nition of the channel

queue, line 17.

Commands are:

� CRT means that the argument is a control command,

� REQ request control command, means that the controller asks for an event

(poping);

� SND send control command, means that the controller will send one or more

events (pushing);

� EMY empty control command, informs that no (more) event is in the queue;

� ESD end-of-send, means that the controller has complete the sending;

� YES acknowledgment command, informs the queue that the controller con-

sumed the given event;

� MULT multiple command, informs the queue that the argument is an multiple

memorized event,

� NORM normal command, informs the queue that the argument is an \normally"

memorized event, i.e. at least one time.

The remaining codes are the alias for the events l1, l2 and w. Notice that the

process Queue has three main states, it can be \waiting" (line 54) for a command

(request or send); treating a request command (line 60); or treating a send command

(line 76). The events are keeped into the vector fifo.

From the line 106 to the line 180, we have the instanciations of the generic

process module to L1, L2, and W, respectively.
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Promela listing.

1 : /** ELECTRE to SPIN version0.7 - Oct. 1997 - IRCyN **

2 : ** (U.M.R. 6597) **

3 : ** 1, rue de la noe NANTES CEDEX 03 FRANCE **

4 : ** electre@lan.ec-nantes.fr **/

5 : /*

6 :

7 : Source Electre program:

8 : [[1/{l1:L1~l1|||l2:L2~l2}]^{w:W~w}]*

9 : */

10 : #define MAX 3 /* Fifo-list length */

11 : #define PRESENT 1

12 :

13 : #define true 1

14 : #define false 0

15 : mtype = {CTR, REQ, EMY, SND, ESD, YES, MULT, NORM,

16 : l1ff, l2ff, wff};

17 : chan queue = [0] of {mtype,mtype};

18 :

19 : #define NoAct 96

20 : #define Start 97

21 : #define Act 98

22 : #define Int 99

23 : #define end 100

24 : #define w 101

25 : #define l2 102

26 : #define l1 103

27 :

28 : chan env= [1] of {byte};

29 :

30 : /* Module Channel & State var definitions */

31 : chan c_W= [0] of { byte };

32 : byte state_W= NoAct;

33 : chan c_L2= [0] of { byte };

34 : byte state_L2= NoAct;

35 : chan c_L1= [0] of { byte };

36 : byte state_L1= NoAct;

37 :

38 : /*========> Process Definitions <==============*/

39 : init {

40 : run L1(c_L1);

41 : run L2(c_L2);

42 : run W(c_W);

43 : }

44 :

45 : /* Process Fifo */

46 :
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47 : active proctype Queue()

48 : {

49 : mtype fifo[MAX];

50 : byte nb = 0;

51 : byte cy ; bool t;

52 : mtype x,y;

53 :

54 : waiting:

55 : if

56 : :: queue?CTR(REQ) -> goto requesting

57 : :: queue?CTR(SND) -> goto reception

58 : :: timeout -> goto error

59 : fi;

60 : requesting:

61 : cy=0;

62 : do

63 : ::(nb==0) -> queue!CTR(EMY) ; goto waiting

64 : ::(cy<nb) -> queue!CTR(fifo[cy]);

65 : queue?CTR(x)-> atomic{

66 : if

67 : ::(x==YES)->

68 : do

69 : ::(cy<nb)->fifo[cy]=fifo[cy+1];cy++

70 : ::else ->nb--;goto waiting

71 : od

72 : ::else -> cy++

73 : fi}

74 : ::else -> queue!CTR(EMY) ;goto waiting

75 : od;

76 : reception:

77 : queue?y(x) -> atomic{

78 : if

79 :

80 : ::(x==ESD) -> goto waiting

81 : ::else -> if

82 : ::(y==MULT)-> fifo[nb]=x;nb++; goto reception

83 : ::else ->cy=0;t=0;

84 : do

85 : ::(fifo[cy]==x)-> goto reception

86 : ::(cy>nb)->fifo[nb]=x;nb++;

87 : goto reception

88 : ::else->cy++

89 : od;

90 : fi;

91 : fi

92 : };

93 : error: skip
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94 : }

95 : active proctype Environment()

96 : {

97 : do

98 : :: env!l1 -> var_l1=true

99 : :: env!l2

100 : :: env!w

101 : :: timeout -> break

102 : od;

103 : end:skip

104 : }

105 :

106 : proctype L1(chan q)

107 : {

108 : state_L1 = NoAct;

109 : if

110 : :: atomic{q?Start -> state_L1 = Act; goto Actif}

111 : :: atomic{q?Act -> state_L1 = Act; goto Actif}

112 : fi;

113 : Actif:

114 : progress_L1:

115 : do

116 : :: atomic{ q?Act -> state_L1 = Act; goto Actif}

117 : :: atomic{ q?Int -> state_L1 = Int; goto Stopped}

118 : :: atomic{ q!end -> state_L1 = end ; var_l1=false; goto End }

119 : od;

120 : Stopped:

121 : if

122 : :: atomic{ q?Act -> state_L1 = Act; goto Actif}

123 : :: atomic{ q?Start -> state_L1 = Act; goto Actif}

124 : fi;

125 : End:

126 : if

127 : :: atomic{ q?Act -> state_L1 = Act; goto Actif}

128 : :: atomic{ q?Start -> state_L1 = Act; goto Actif}

129 : fi

130 : }

131 : proctype L2(chan q)

132 : {

133 : state_L2 = NoAct;

134 : if

135 : :: atomic{q?Start -> state_L2 = Act; goto Actif}

136 : :: atomic{q?Act -> state_L2 = Act; goto Actif}

137 : fi;

138 : Actif:

139 : progress_L2:

140 : do
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141 : :: atomic{ q?Act -> state_L2 = Act; goto Actif}

142 : :: atomic{ q?Int -> state_L2 = Int; goto Stopped}

143 : :: atomic{ q!end -> state_L2 = end ; goto End }

144 : od;

145 : Stopped:

146 : if

147 : :: atomic{ q?Act -> state_L2 = Act; goto Actif}

148 : :: atomic{ q?Start -> state_L2 = Act; goto Actif}

149 : fi;

150 : End:

151 : if

152 : :: atomic{ q?Act -> state_L2 = Act; goto Actif}

153 : :: atomic{ q?Start -> state_L2 = Act; goto Actif}

154 : fi

155 : }

156 : proctype W(chan q)

157 : {

158 : state_W = NoAct;

159 : if

160 : :: atomic{q?Start -> state_W = Act; goto Actif}

161 : :: atomic{q?Act -> state_W = Act; goto Actif}

162 : fi;

163 : Actif:

164 : progress_W:

165 : do

166 : :: atomic{ q?Act -> state_W = Act; goto Actif}

167 : :: atomic{ q?Int -> state_W = Int; goto Stopped}

168 : :: atomic{ q!end -> state_W = end ; goto End }

169 : od;

170 : Stopped:

171 : if

172 : :: atomic{ q?Act -> state_W = Act; goto Actif}

173 : :: atomic{ q?Start -> state_W = Act; goto Actif}

174 : fi;

175 : End:

176 : if

177 : :: atomic{ q?Act -> state_W = Act; goto Actif}

178 : :: atomic{ q?Start -> state_W = Act; goto Actif}

179 : fi

180 : }

181 : active proctype Controller()

182 : {

183 : mtype x;

184 : /* No process to Start up ! */

185 :

186 : St0:

187 : do
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188 : ::queue!CTR(REQ);

189 : queue?CTR(x);

190 : if

191 : ::(x==EMY)-> break

192 : ::(x==l1ff) -> queue!CTR(YES); c_L1!Act; goto St1

193 : ::(x==l2ff) -> queue!CTR(YES); c_L2!Act; goto St2

194 : ::(x==wff) -> queue!CTR(YES); c_W!Act; goto St3

195 : ::else -> skip

196 : fi

197 : od;

198 : do

199 : :: env?l1 -> c_L1!Act; goto St1

200 : :: env?l2 -> c_L2!Act; goto St2

201 : :: env?w -> c_W!Act; goto St3

202 : od;

203 :

204 : St3:

205 : do

206 : ::env?l1 -> queue!CTR(SND);

207 : queue!NORM(l1ff);

208 : queue!CTR(ESD)

209 : ::env?l2 -> queue!CTR(SND);

210 : queue!NORM(l2ff);

211 : queue!CTR(ESD)

212 : ::c_W?end -> goto St0

213 : od;

214 :

215 : St2:

216 : do

217 : ::queue!CTR(REQ);

218 : queue?CTR(x);

219 : if

220 : ::(x==EMY)-> break

221 : ::(x==l1ff) -> queue!CTR(YES); c_L1!Act; goto St4

222 : ::(x==wff) -> queue!CTR(YES); c_L2!Int; c_W!Act; goto St3

223 : ::else -> skip

224 : fi

225 : od;

226 : do

227 : ::c_L2?end -> goto St0

228 : :: env?l1 -> c_L1!Act; goto St4

229 : :: env?w -> queue!CTR(SND);

230 : queue!NORM(l2ff);

231 : queue!CTR(ESD);

232 : c_L2!Int; c_W!Act; goto St3

233 : od;

234 :
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235 : St4:

236 : do

237 : ::queue!CTR(REQ);

238 : queue?CTR(x);

239 : if

240 : ::(x==EMY)-> break

241 : ::(x==wff) -> queue!CTR(YES); c_L1!Int; c_L2!Int; c_W!Act; goto St3

242 : ::else -> skip

243 : fi

244 : od;

245 :

246 : do

247 : ::c_L1?end -> goto St5

248 : ::c_L2?end -> goto St6

249 : :: env?w -> queue!CTR(SND);

250 : queue!NORM(l1ff);

251 : queue!NORM(l2ff);

252 : queue!CTR(ESD);

253 : c_L1!Int; c_L2!Int; c_W!Act; goto St3

254 : od;

255 :

256 : St6:

257 : do

258 : ::queue!CTR(REQ);

259 : queue?CTR(x);

260 : if

261 : ::(x==EMY)-> break

262 : ::(x==wff) -> queue!CTR(YES); c_L1!Int; c_W!Act; goto St3

263 : ::else -> skip

264 : fi

265 : od;

266 : do

267 : ::env?l2 -> queue!CTR(SND);

268 : queue!NORM(l2ff);

269 : queue!CTR(ESD)

270 : ::c_L1?end -> goto St0

271 : :: env?w -> queue!CTR(SND);

272 : queue!NORM(l1ff);

273 : queue!CTR(ESD);

274 : c_L1!Int; c_W!Act; goto St3

275 : od;

276 :

277 : St5:

278 : do

279 : ::queue!CTR(REQ);

280 : queue?CTR(x);

281 : if



P. Arg�on et al., Issues in Using Formal Methods, EJS, 1(1) 52-75 (1998) 74

282 : ::(x==EMY)-> break

283 : ::(x==wff) -> queue!CTR(YES); c_L2!Int; c_W!Act; goto St3

284 : ::else -> skip

285 : fi

286 : od;

287 : do

288 : ::env?l1 -> queue!CTR(SND);

289 : queue!NORM(l1ff);

290 : queue!CTR(ESD)

291 : ::c_L2?end -> goto St0

292 : :: env?w -> queue!CTR(SND);

293 : queue!NORM(l2ff);

294 : queue!CTR(ESD);

295 : c_L2!Int; c_W!Act; goto St3

296 : od;

297 :

298 : St1:

299 : do

300 : ::queue!CTR(REQ);

301 : queue?CTR(x);

302 : if

303 : ::(x==EMY)-> break

304 : ::(x==l2ff) -> queue!CTR(YES); c_L2!Act; goto St7

305 : ::(x==wff) -> queue!CTR(YES); c_L1!Int; c_W!Act; goto St3

306 : ::else -> skip

307 : fi

308 : od;

309 : do

310 : ::c_L1?end -> goto St0

311 : :: env?l2 -> c_L2!Act; goto St7

312 : :: env?w -> queue!CTR(SND);

313 : queue!NORM(l1ff);

314 : queue!CTR(ESD);

315 : c_L1!Int; c_W!Act; goto St3

316 : od;

317 :

318 : St7:

319 : do

320 : ::queue!CTR(REQ);

321 : queue?CTR(x);

322 : if

323 : ::(x==EMY)-> break

324 : ::(x==wff) -> queue!CTR(YES); c_L1!Int; c_L2!Int; c_W!Act; goto St3

325 : ::else -> skip

326 : fi

327 : od;

328 : do
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329 : ::c_L1?end -> goto St5

330 : ::c_L2?end -> goto St6

331 : :: env?w -> queue!CTR(SND);

332 : queue!NORM(l2ff);

333 : queue!NORM(l1ff);

334 : queue!CTR(ESD);

335 : c_L1!Int;

336 : c_L2!Int;

337 : c_W!Act;

338 : goto St3

339 : od;

340 : end: skip

341 : }


