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Abstract

A new partitioning algorithm that permutes sparse matrices to a specific block lower-
triangular form (BlTF) complying with special features required for instrumentation problems is
presented. The proposal consists in the decomposition of the occurrence matrix in two stages,
using methodologies based on graph theory. First of all, Hopcroft-Karp´s algorithm is employed
to match the vertices, this classification being carried out by means of a modification of
Dulmage-Mendelsohn´s technique, which was devised by the authors. The second step is the
application of Tarjan´s algorithm to the square blocks obtained as a result of the first stage.
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INTRODUCTION

Solving systems of non-linear equations efficiently has been one of the most widely
studied topics during the last few decades (Rabinowitz, 1970; Björk, 1996). A useful approach
to handle this problem is to try to decompose the original system S into a sequence of
subsystems S1, S2, ... Sn, so that the solution can be reached by solving each of them
separately in the proper order. The first step to determine {Si} is to build the occurrence

matrix M, whose rows and columns correspond to the system’s equations and variables
respectively. Then, M is permuted to a block triangular form (BTF), where each diagonal
block corresponds to an Si from S. The technique was first used for the analysis of the
structure of large systems of equations (linear or non-linear) by Stewart (1962). Romagnoli
and Stephanopoulos (1980) introduced the philosophy for the treatment of engineering
problems connected with instrumentation design.

The methods employed to get a BTF are known as partitioning algorithms. These
strategies lead to savings in execution time and memory storage. In his book, Duff (1997)
describes all the usual graph-oriented partitioning methodologies for square structurally non-
singular matrices. Whenever structurally singular matrices might arise, the most efficient
procedures available are also based on graph theory, specifically on Dulmage-Mendelsohn´s
decomposition for bipartite graphs (1963). The resulting pattern is upper-triangular in blocks
(BuTF), with the structure shown in Fig. 1.
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Fig. 1: Classical BTF

In the most general case, some of its diagonal blocks are horizontal (with more columns
than rows), like Ai; others are square (with the same amount of rows and columns), like Bi;
and the rest are vertical (with more rows than columns), like Ci. The shaded area indicates the
sections that can contain non-zero elements.

Unfortunately, the above mentioned BTF is inadequate for some specific applications to
chemical engineering issues. The classification of unmeasured variables performed to analyse
the instrumentation of industrial plants, in particular, requires permutation to a block lower-



I. Ponzoni et al., Permutation of Sparse Matrices using Graph Decompositions, EJS, 1(1) 76-83 (1998) 78

triangular form (BlTF) like the one shown in Fig. 2. This BTF contains a square submatrix of
order p, whose columns correspond to the determinable variables, all its diagonal blocks Ai

being square and structurally non-singular. The block of dimension rxp is related to the
system’s redundant equations, whereas the equations in the block of dimension qx(p+i) are
associated with the indeterminable variables. It is important to note that the pattern shown in
Fig. 2 cannot be obtained just by transposing the classical BuTF.
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Fig. 2: BlTF required for the Classification of Unmeasured Variables

employed in Process Plant Instrumentation.

The specific aim of this work is the development of a new partitioning algorithm to yield
the above mentioned BlTF. The long-term objective of our research is to obtain a software
package for the sensible and efficient choice of the most convenient configuration for plant
instrumentation. Making improvements in the design of partitioning algorithms is the first step
that should be taken in order to achieve this goal.

PARTITIONING ALGORITHM

We have designed a new method to yield the required BlTF. The procedure consists in
partitioning the occurrence matrix by means of a decomposition carried out in two levels. In
the first place, a bipartite graph (bigraph) is associated to the matrix. Then, a maximum
matching for the bigraph is determined. As a result of this procedure, a preliminary
partitioning of the matrix, whom we shall refer to as coarse decomposition, is obtained. The
second stage, which will be called the fine decomposition, associates a directed graph
(digraph) to each of the square blocks obtained through the coarse decomposition. Finally, the
digraphs are explored by means of depth-first searches so as to determine all their strong
components. Each strong component will correspond to a square diagonal block Ai from the
BlTF given in Fig. 2.

At this point, it is interesting to mention that the idea of performing a decomposition in
different levels had already been employed by Pothen and Fan (1990). Although they also
used both a coarse and a fine decomposition, the procedures themselves are internally
different, finally leading to a BTF like the one shown in Fig. 1.

The following algorithm shows the proposed partitioning procedure:
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New Partitioning Algorithm

Given the occurrence matrix M

1.  Coarse Decomposition
1.1.  Associate the bigraph G(M) = (R,C,E) to M.
1.2.  Obtain a maximum matching Pm.
1.3.  Classify the rows into VR, SR1, SR2, HR and the columns into SC1, SC2, HC based on Pm.

2.  Fine Decomposition
2.1. Associate a digraph G(M1) = (V,E) to the submatrix M1, made up of the block (SR1,SC1).
2.2. Decompose G(M1) into its strong components M11, M12, ..., M1m.

          Each M1i corresponds to a diagonal block.
2.3. Associate a digraph G(M2) = (V,E) to the submatrix M2, made up of the block (SR2,SC2).
2.4. Decompose G(M2) into its strong components M21, M22, ..., M2k.

          Each M2i corresponds to a diagonal block.

3.  Reordering
     Rearrange M´s blocks as follows:  [M11, M12, ..., M1m, M21, M22, ..., M2k, (VR,SC1), (HR,HC)]

Coarse Decomposition

The coarse decomposition procedure is based on the classical algorithm devised by
Dulmage and Mendelsohn. The technique associates the bigraph G(M) = (R,C,E) to a matrix
M, where R and C are the vertex sets that correspond to M´s rows and columns respectively
and E represents the set of G´s edges associated to M´s non-zero elements. In other words, if
the component M(i,j) is not zero, then there is an edge ek∈ E that joins vertices i and j, where
i∈ R and j∈ C.

Afterwards, a maximum matching Pm of the bigraph is searched for. Pm will determine M´s
coarse decomposition. A matching P from G(M) is a subset of E, whose edges have no
common endpoints. In terms of matrix M, this means that a matching corresponds to a set of
non-zero elements, none of which belongs to the same row or column. This set of elements is
also known as the matrix’s transversal. A vertex is matched if it is the endpoint of an edge in
a matching P; otherwise it is said to be unmatched. A matching of G(M)´s is called maximum,

and noted Pm, if there are no other matchings P’ among G(M)´s such that |P’| > |Pm|, where | |
indicates set cardinality. In the context of matrices, the methods employed to find a maximum
matching in G(M), or a maximum transversal of M, are also known as assignment

algorithms. Fig. 3.a shows a maximum matching for the bigraph associated with the matrix
given in Fig. 3.b, where the matched edges are indicated with darker lines. The non-zero
elements corresponding to the maximum transversal of the matrix are highlighted in bold in
Fig. 3.c.
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a) M´s Coarse Decomposition
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0 0 1 0 1 1 0 0 0 0 1

1 0 0 0 0 0 1 1 0 0 0

1 0 0 1 0 0 0 0 0 1 1

0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 1 1 0 0

0 0 1 1 0 0 0 1 0 0 0

1 1 0 0 0 0 1 1 0 0 0

0 0 1 1 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 1

1 1 0 0 0 0 0 0 0 0 0

b) Occurrence Matrix

2 7 8 1 10 11 4 3 6 9 5
4 1 1 0 0 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0 0 0
8 1 1 1 1 0 0 0 0 0 0 0
2 0 1 1 1 0 0 0 0 0 0 0

11 0 1 0 0 1 1 0 0 0 0 0
3 0 0 0 1 1 1 1 0 0 0 0
9 0 1 0 0 0 0 1 1 0 0 0
7 0 0 1 0 0 0 1 1 0 0 0

12 1 0 0 1 0 0 0 0 0 0 0
10 1 0 0 1 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 0 1 1 0 1

c) M´s Rearrangement after Coarse Decomposition.

Fig. 3: Example

The problem of permuting M to BlTF is now reduced to the search for a maximum
matching in G(M). The most efficient algorithm that performs this task was developed by
Hopcroft and Karp (1973). It is based on searches along augmented paths. A path is a
sequence of vertices v0, v1, ..., vn-1, vn, where (vi,vi+1) is an edge from G(M) and vi≠vj ∀  i≠j.
An alternating path in a matching P is a path in G(M) whose edges alternate in P. For
example, if the first edge along the alternating path does not belong to P, then all the edges at
even positions on the way do belong to P, while those in odd positions do not. Finally, an
augmented path in a matching P is an alternating path in P that begins and ends at unmatched
vertices. The cardinality of a matching is the number of edges that it contains. An augmented
path A can be employed to increase the cardinality of a matching P by the removal from P of
those edges that belong to both sets (A ∩ P) together with the addition to P of all the edges
that are only present in A. It is easy to show that each augmented path A increases in one the
cardinality of the matching. In this way, a maximum matching is achieved when there are no
more augmented paths left.

Once a maximum matching has been found out, the vertices are categorized. This
classification decomposes the matrix associated with the bigraph into several blocks, which
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lead to the desired BlTF after an appropriate rearrangement. The decomposition proposed in
this paper partitions the sets of vertices, R and C, into the following disjoint subsets:

VR = {unmatched row vertices }

SR1 = { matched row vertices, reachable from some unmatched row vertex
              through an alternating path }

HR = { matched row vertices, reachable from some unmatched column vertex
              through an alternating path }

SR2 = R\(VR∪ SR1∪ HR)

SC1 = { matched column vertices, reachable from some unmatched row vertex
              through an alternating path }

HC = { column vertices (either matched or unmatched), reachable from some unmatched
            column vertex through an alternating path }

SC2 = C\(SC1∪ HC)

The main difference between this approach and Dulmage and Mendelsohn´s lies in the fact
that the latter places the row vertices that belong to VR and SR1 in the same set, whereas our
classification makes a distinction. Fig. 3.a illustrates our partitioning for the matrix in Fig.
3.b. Fig. 3.c shows the resulting matrix after being rearranged according to the coarse
decomposition. It is evident that VR´s vertices are associated with the system’s redundant
equations, while HR´s correspond to the equations that contain indeterminable variables. As
to the columns, SC1 and SC2 are related to the determinable variables and HC is connected
with the indeterminable variables.

Fine Decomposition

The coarse decomposition yields two square blocks determined by the sets (SR1,SC1) and
(SR2,SC2). The fine decomposition partitions these blocks into square irreducible
subsystems by means of Tarjan´s algorithm for the decomposition of a directed graph into
strong components (1972). This procedure associates a directed graph G(N) to each square
block N obtained as a result of the first decomposition.

Given a square matrix N with full transversal (i.e., without zeroes in its diagonal), then it is
possible to find an associated digraph G(N)=(V,E) where V and E are the sets of vertices and
edges respectively. Then, |V| is equal to the order of N and there is an edge (vi,vj)∈ E, directed
from vertex i to vertex j, if and only if N(i,j)≠0, for i≠j. It is important to remark that the
submatrices M1 and M2 have a full transversal because the square blocks yielded by the coarse
decomposition correspond to matched rows and columns. The block (SR2,SC2) and its
associated digraph are shown in Fig. 4.a and Fig. 4.b respectively.

1 2 3 4
1 1 1 0 0
2 1 1 1 0

3 0 0 1 1
4 0 0 1 1

a) M2 = (SR2,SC2)
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Fig. 4: Fine Decomposition for Block M2 = (SR2, SC2)

A digraph G=(V,E) is strongly connected if there is a path from u to v as well as another
one from v to u for each different pair of vertices u and v, where u,v∈ V. If a digraph is not

connected strongly, then it can be partitioned into strongly connected subgraphs, called G´s
strongly connected components or just G´s strong components. Fig. 4.c represents the strong
components for the digraph associated to block (SR2,SC2). Fig. 4.d corresponds to the same
block after rearrangement. Tarjan´s algorithm determines the strong components by means of
depth-first searches. A detailed description can be found in Tarjan´s paper (1972).

The third step of the new partitioning algorithm aims at rearranging the blocks resulting
from the previous stages to yield the structure shown in Fig. 2. The blocks M11, ..., M1m, M21,
..., M2k mentioned in the algorithm correspond to the blocks A1, ..., An in Fig. 2. The blocks
(VR,SC1) and (HR,HC) correspond to the submatrices of dimension rxp and qx(p+i)
respectively.

Efficiency and Correctness

The order of the proposed algorithm as regards execution time can be estimated from the
order of each decomposition procedure. The coarse decomposition in particular employs
Hopcroft-Karp´s algorithm, whose execution time is O(n

3/2τ) in the worst cases, where n is the
number of vertices in G(M) and τ is the number of non-zero elements in M. Since τ ≤ n2 it can
be stated that Hopcroft-Karp´s algorithm has execution times of O(n

5/2
). As to the fine

decomposition, Tarjan´s method is of (O(n)+O(τ)). Taking into account that both methods are
applied sequentially, it is immediate that the proposed algorithm has O(n

3/2τ). Finally, it is
important to remark that the correctness of our procedure can be assessed from the correctness
of Hopcroft-Karp and Tarjan´s algorithms. The methodology is both robust and trustworthy,
preserving the high quality of the partitions yielded by those two individual techniques.

CONCLUSIONS

A new partitioning algorithm for the search of a specific BlTF specially adapted to solve
process plant instrumentation problems is presented in this paper. In this context, the method
performs a structural rearrangement of the occurrence matrix associated to the mathematical
model of industrial processes. To perform this task, already existing algorithms (Hopcroft-
Karp and Tarjan) were combined on the basis of a new vertex classification proposed by the
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authors. This classification leads to a structure which is different from the typical one
employed for other applications, yielding a BlTF specially adapted to fulfil our requirements.

In practice, some of the diagonal blocks in a BlTF may correspond to subsystems which
are unsolvable due to physical considerations associated with the meaning or scope of the
model equations. Since these limitations go beyond a mere structural analysis, the
incorporation of block constraints that avoid inadequate assignments becomes indispensable.
We are currently working on this issue.

A lot of work remains to be done in order to accomplish our long-term objective: an
efficient and reliable software package for plant instrumentation design. The next step is to
incorporate the analysis of constraints. The final stages are the implementation of the program
and its testing on real plants of huge size, typically systems involving 10.000 equations.
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