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modelos estad́ısticos del campo de la neurociencia. Observamos que la
LSTM-Predictability puede modelar movimientos oculares con una alto
solapamiento tanto con cloze-Predictability como con la frecuencia léxica.
Además, este rendimiento vaŕıa en función del corpus de entrenamiento.
Este estudio es un paso más hacia la comprensión de cómo nuestro cere-
bro realiza predicciones durante la lectura.

Keywords: LSTM · Eye Movements · Linear Mixed Models · Reading.

1 Introduction

The Natural Language Processing (NLP) field has witnessed a rapid evolution
during the last couple of decades. This evolution has allowed to achieve the reso-
lution of a great number of computational-linguistics tasks. Part of the advances
performed in the last decade were made by the use of Recurrent Neural Networks
(RNN), in particular, Long Short-Term Memory networks, first introduced in
1997 [11] and popularized some years ago after beating several competitions [23,
9, 21]. This architecture helped to solve some of the issues presented in the RNN.
In the classical (vanilla) RNN, the cell state is calculated from the product of
all the previous states. This makes the gradients grow or decrease exponentially,
generating the vanishing and exploding gradients, respectively. To solve these
issues, in the LSTM architecture, the update of the context information is done
by the use of gates that allow the old information to be forgotten. This scheme
allows the model to retain context information through long sequences of words,
minimising gradient issues.

Additionally, in the last couple of years, a new type of architecture was
introduced, generating the latest revolution in the field: the Transformers [34].
The main difference between Transformers and RNN is that the former processes
the whole sequence of words at once, and not one-by-one like the latter ones.
This allows not only to avoid vanishing and exploding gradient issues, but also
to speed up the learning process, and thus, to generate bigger models, producing
more complex language abstractions. Nowadays many models are based in the
Transformer architecture, like BERT [7], ELMO [25], or the GPT family [26,
27, 6], alternating the number of sequential layers of Transformer modules, the
presence of encoding and decoding layers, etc.

On the one hand, these advances allow software companies to develop appli-
cations with a great impact on our daily use of technologies. Automatic subtitles
and closed captions, text translation between a large set of languages, chatbots
for customer service that can answer more than pre-defined questions, etc., are
now commonly found for final users on several online applications. On the other
hand, they can also help us to better understand how our brain processes lan-
guage during cognitive tasks like reading or listening. From this crossover be-
tween NLP and cognitive neuroscience, it could also be possible to generate a
better understanding of how the NLP models work. Previous knowledge from
neuroscience and brain representations of language can allow us to understand
how these models generate the abstractions.
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In the Psycholinguistic field, brain mechanisms involved in natural read-
ing are studied by relating word properties with behavioural and physiological
data acquired from readers. For example, the eye-tracking technique is based on
recording the position of the reader’s gaze on a screen during text presentation
[17, 28, 19]. With this information, the time expended by the reader on each word
(i.e., Gaze Duration –GD–) is analysed as the reflection of their processing cost.
It has been shown that GD correlates with word properties like word length (in
characters), lexical frequency, position in the sentence and text, and Predictabil-
ity, among others [19, 18, 2, 28]. Nowadays, these analyses are performed using
Linear Mixed Models (LMM). The LMM allow us to understand how each co-
variable relates to GD, taking into account the variance introduced by subjects
or the selected material for the experiment (random effects). Thus, by doing
this type of analysis, it is possible to understand which features are used by our
brains to process the information.

Most of the previously introduced variables can be easily calculated from
the text itself. For example, the word length and word position in the sentence
and in the text can be calculated by simple algorithms. Other of these variables
are estimated from an independent corpus, like the lexical frequency [29, 8].
But the Predictability is a subjective variable, that depends on readers and not
only on the words and the text. This variable is defined as the probability of
knowing the word based only on its previous context. It is usually assessed by
performing an independent experiment named cloze-task. In this experiment,
incomplete contexts are presented to participants who must answer the most
probable word that continues it [30]. Then, the cloze-Predictability for a given
word in a given context is defined as the proportion of participants that correctly
answered it. The quality of the Predictability estimation is closely related to the
number of participants on the cloze-task. More participants not only implies
more data itself but also a better definition of the scale. For example, if the
cloze-task is resolved by 5 participants, cloze-Predictability will only take values
of 0, 0.2, 0.4, 0.6, 0.8, or 1. As the number of participants increases, the number of
possible cloze-Predictability values also increases. Additionally, this estimation
is only valid for a given word in the context in which it was tested. When a new
experiment with a different text corpus is planned, a new cloze-task is needed.
Thus, the cloze-Predictability is an expensive variable, which results in the fact
that several experiments are performed using the same text corpus several times.
Finding a computational replacement that behaves like the human-estimated
Predictability would allow us to expand the possibilities of renewing the stimuli
in the psycholinguistic experiments.

In the last decades, researchers have made several attempts to model cloze-
Predictability using simple computational models, but until now, they have not
reached conclusive results [24, 12, 2, 13, 1]. In 2008, Ong and Kliegl [24] anal-
ysed how the conditional co-occurrence probability of a word given its context,
measured by its frequency on internet search engines (Google, Yahoo!, MSN), re-
placed the cloze-Predictability in eye movements models. They found that their
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measure predicts fixation duration more similarly to lexical frequency than to
predictability.

More recently, Hofmann and colleagues [12, 13] used NLP algorithms for next-
word predictions. In these studies, they trained N-grams, Topic Models (LDA),
and Recurrent Neural Networks with a corpus from Wikipedia and movie subti-
tles, adding the resulting probabilities to statistical models with eye movement
variables (single fixation duration and gaze duration).After analysing how much
variance these probabilities accounted for in each model they conclude that com-
putational algorithms can explain these eye movements variables better than the
original cloze-Predictability. Finally, Algan [1] showed how a LSTM-based Pre-
dictability correlates with cloze-Predictability in Turkish.

In 2020, Bianchi and colleagues [2] showed that N-gram probabilities and
semantic similarities from different distributional semantics algorithms (LSA,
word2vec, FastText) can partially replace the cloze-Predictability in LMM using
the GD as the dependent variable. In this study, they not only analysed how
computational-Predictabilities predicted GD, but also how much variance these
estimations left for the cloze-Predictability. They found that the count-based
algorithm N-gram is the one that better models the next-word probability, cap-
turing a relevant part of the cloze-Predictability effect. They also found that
this variable also capture much of the variance from the lexical frequency effect.
Similarity metrics from all the other three algorithms were not able to explain
a relevant amount of the GD variance in the LMM. For these embedding-base
models, most of the observed effects were based on taking variance from the
Frequency effect. From these results, they conclude that, on one hand, the N-
gram language model was their best approach to mimic the cloze-Predictability.
On the other hand, that it is important to take into account how much each
computational estimation relies on the Frequency effect. As far as we know, this
is the only precedent of this type of analysis performed in Spanish.

All together these results shows that language models, even a really sim-
ple one like N-gram, are able to capture part of the nature of the human-
Predictability. In contrast, metrics from other models results in less accurate
estimations. Language Models are designed to model the text a probability dis-
tribution, where the occurrence of a word depends on the previous elements of
the sentence. These are trained to retain information about the context and pre-
dict the upcoming word. For example, the N-gram model estimates probabilities
based only on the co-occurrence probability of the exact same chain of the last n
words. Modern language models, like LSTM-based language models, add layers
of abstractions and the possibility of using more previous context to solve this
task.

In the present work, we aim to use the ASGDWeight-Dropped LSTM (AWD-
LSTM) model [21] to comprehend how predictions are performed by analysing
how they relate to GD and other word properties. To compare with previous
results, we use an available corpus of short stories with Gaze Duration and close-
Predictability measured for each word. As we previously stated, modelling Pre-
dictability with computational algorithms will not only ease the psycholinguistic
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experiments but will also allow a better understanding of the human brain pre-
dictions. Even more, since the state-of-the-art NLP algorithms are highly opaque
to the understanding of how they generate language abstractions, this crossover
with the neuroscience field could also be an opportunity for the Artificial Intel-
ligence field. The knowledge from cognitive neuroscience and psycholinguistics
could help us to better understand how these complex neural networks achieve
their amazing results.

2 Methods

In the present study we will analyse how the cloze-Predictability (Figure 1A)
impacts on the Gaze Duration during natural reading of short stories (Figure
1B) and how predictions from two different LSTM-based language models replace
this variable (Figure 1C).

2.1 Eye movements

Eye movements were recorded from thirty-six native Spanish readers. All par-
ticipants had normal or corrected-to-normal vision. Each participant completed
sessions of 2 hours reading between three and four stories out of eight possible
texts from the Buenos Aires Corpus [18]. Stories were presented on a PC monitor
(black Courier New bold font; 0.448 letter width; 0.318 minimum letter height;
grey background). Each one was presented across several screens, with 10 lines
of text at a time (double-spaced, 1.68 interline spacing; 55 character maximum
per line). Subjects were instructed to read at their own rate, moving forward
or backward in the screen sequence by pressing the right and left arrow keys,
respectively. Texts were assigned pseudo-randomly to participants to achieve a
similar number of readings of each text. Subjects answered five questions regard-
ing the contents of each text, which were used to determine their comprehension
level. We obtained an average of 4.7 correct answers and a minimum of 3.

Gaze position was recorded at a sampling rate of 1kHz with a video-based
eye tracker (EyeLink 1000 from SR research). A chin rest that was aligned with
the centre of the screen prevented head movements. The participant’s gaze was
calibrated with a standard 13-point grid for both eyes. Two nine-point valida-
tions were run before and after each text. Based on these validations, the best
calibrated eye was selected for each participant. Presentation of stimuli was de-
veloped using Matlab 4 and Psychotoolbox [5].

Then, gaze position was used to calculate the Gaze Duration (GD) for each
word. This variable, also called First Pass Reading Time, is defined as the total
time spent on a word before leaving it for the first time, i.e., the addition of all
fixations on a word during the first pass, without counting future refixations. This
eye movement variable will be used as the dependent variable in the statistical
models used in this study. All this data is publicly available from Bianchi et al.
[2].

4 (http://www.mathworks.com/)
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Fig. 1. Experimental designs: A) The human Predictability was estimated from the
online responses of several participants to a web cloze-task experiment. Each partic-
ipant had to complete one of every 30 words, and the text was uncovered as they
responded. B) Eye movements were recorded in separate participants that read three
of the eight texts in the lab. The eye movement measures (Gaze duration) were anal-
ysed using Linear Mixed Models. C) AWD-LSTM architecture was trained on a large
Wikipedia corpus and fine-tuned with a smaller corpus of texts from a similar domain
as the tested short stories (A,B).

2.2 Cloze Task

The cloze-task is performed by presenting uncompleted texts to participants who
have to answer the next most probable word for that context. Then, the Pre-
dictability of each word is estimated as the probability of correctly guessing it
in the cloze-task. The corpus from Bianchi et al. comprises cloze-Predictability
from more than 1000 participants (16± 8 per word) collected online [2]. It was
performed using a custom-made web page where participants logged-in to find
one of the eight selected stories randomly assigned. After finishing a story, par-
ticipants were allowed to either close the experiment or continue with a new
randomly assigned text. Participants that closed the experiment could return to
the following stories at any moment.
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2.3 AWD-LSTM predictability

In the present study all the LSTM-based language models were fitted using the
AWD-LSTM architecture [22]. This architecture is a variant of the LSTM model
that introduces a regularisation method called DropConnect that avoids the
over-fitting of the gates without penalising the training speed. Additionally, it
also uses other regularisation methods such as embedding dropout, Variational
dropout between layers, and L2 regularisation of the weights.

For this the implementation provided by the fastAI library5 was trained to
get the next-word probability (from now on LSTM-Predictability). The model
consisted of three stacked LSTM layers with 400, 1152, and 400 dimensions
respectively, and multiple dropout layers, as described by Merity et al. [22].
Each word was represented as 400 dimensional embeddings in the input and the
output layers.

Following the method proposed by Howard and collaborators [16], we trained
the model in two phases. Firstly, the model was trained using a corpus taken
from the Spanish Wikipedia. This corpus has a total of 444,571 documents and
2,751,415 tokens. Under the hypothesis that this training would result in predic-
tions biased towards an encyclopaedic style, and given that the testing corpus
is composed of narrative stories, a fine-tuning with a corpus of a closer domain
was performed in a second stage. This small corpus consisted of 2,081 Spanish
narrative stories with 535,068 tokens [2].

In the first phase, we trained the model for 10 epochs, using a One-Cycle
policy with a maximum learning rate of 0.002. In the second phase, we replaced
the encoder layer and trained it for two steps (max learning rate = 0.026 ) while
keeping the remaining layers unchanged to avoid the effect known as catastrophic
forgetting. After that, all the parameters were tuned on eight epochs (max learn-

ing rate = 0.0026 ).
Both versions, the one trained with Wikipedia-only and its fined-tuned ver-

sion, were used independently to perform next-word prediction for each word
from the story corpus used in the eye tracking experiment previously presented.
This data is publicly available at 6.

2.4 Statistical analysis

The logit of Predictability measures (both cloze and LSTM) were used as co-
variables in successive LMM with Log-transformed Gaze Duration (GD) as the
dependent variable. This model also included as additional co-variables a set of
previously described text properties (launch position, the inverse of the word
length, the logarithm of lexical frequency, their interaction, and the position in
the line, the text, and the sentence). Subject and text identifiers, and the fixated
word as a string, were used as random effects. Text variables and the results for
the LMM with the ngram-Predictability as co-variable were publicly available
by Bianchi et al. [2].

5 www.fast.ai
6 reading.liaa.dc.uba.ar
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The main outputs of the LMM are the estimates of the slopes and their errors
(SD) for each of the fitted fixed factors. Using them, t-values are calculated as the
ratio between each slope and its SD. These values represent how far away from
zero the slopes are. As our models are fitted with a high number of instances,
the distributions of the used co-variables can be considered as normal, and thus,
absolute t-values larger than 2.0 are considered significant with α < 0.05 [3].
Each significant effect implies a linear relation between that co-variable and the
dependent variable. Since the estimate of the slope of a LMM co-variable depends
on its scale, and each estimation of Predictability has a different range of values,
we based our analyses mostly on the effect t-value, which are standardised.

To analyse how each LSTM-Predictability mimics the cloze-Predictability,
residuals of the corresponding LMM are analysed. That is, after fitting a LMM
with each LSTM-Predictability as co-variable, residuals of the fixed effects will
be used in a new LMM with cloze-Predictability as the only fixed effect, con-
serving the random structure. For this procedure, we used the remef function
[14] implementation for R.

To compare the performance of the hierarchically built models on the data
the Akaike Information Criterion (AIC) was used. This estimator is calculated as
the log likelihood of the model, compensated by the number of fixed effects [33].
The smaller it gets, the better the model can explain the data, compensating
the number of variables to avoid over-fitting.

3 Results

A series of Linear Mixed Models (LMM) with different combinations of co-
variables were fitted to analyse how the next-word probability from two AWD-
LSTM models (LSTM-Predictability) mimics the cloze-Predictability. The base-
line model (Fig. 2A, M0) comprised a set of previously described co-variables:
launch position of the eye, the inverse of the word length in characters, the
logarithms of the lexical frequency, the positions in the line, the text and the
sentence, and the interaction between length and frequency. All these variables
showed significant effects, as expected from previous studies [18, 2]. Subsequently,
the cloze-Predictability was added in a a new model (Fig. 2A, M1), showing a
clear and significant negative effect on GD. The addition of this co-variable gen-
erated negligible changes in the co-variables effects of the baseline model.

Results from both AWD-LSTM models were added as co-variables in inde-
pendent LMM. Firstly, we used the output of a LSTM model trained only with
a Spanish Wikipedia corpus, a big but not specific corpus for the task (Fig.
2A, M2). The t-value of the Wikipedia-Only LSTM-Predictability on the LMM
(t = −14.97) was similar to the cloze-Predictability t-value on M1 (t = −16.23).
Some co-variables from the baseline model showed changes in their effects. This
change is particularly substantial on the lexical frequency.

Going one step further, we compared not only how this LSTM-Predictability
explain the GD on the LMM, but also how much of the explained variance by this
co-variable overlap with the variance explained by other possible co-variables,

A. Umfurer et al, Using LSTM-based Language Models and human Eye Movements, EJS 21 (2) 2022 2-16 9



like the cloze-Predictability. Then, to observe if the cloze-Predictability can be
explained by the results from this LSTM, the residuals of the LMM (M2 Wiki-
Only) were fitted into a new LMM with cloze-Predictability as the only fixed
effect (Residuals + cloze-Predictability). This analysis showed that the effect
of human Predictability remains significant (t = −11.63, Fig. 2B, M2). This
implies there is still variance associated with cloze-Predictability left after fitting
the model with the LSTM results. That is, the AWD-LSTM model trained only

Fig. 2. A) t-values from four LMMs with different sets of co-variables. M0: baseline
models. M1: baseline model and Cloze-Predictability variable. M2: baseline model and
LSTM-Predictability trained only with Wikipedia. M3: baseline model and LSTM-
Predictability trained with Wikipedia and fine-tuned with a story corpus. B) t-values
for the cloze-Predictability effect on a Linear Mixed Model fitted on the residuals of
each of models on A. C) AIC values for each of the fitted models on A relative to the
M0 AIC.
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with a Wikipedia corpus can only partially model the cloze-Predictability effect
on Gaze Duration. Moreover, the drop in the significance of the frequency effect
shows that a part of its effect comes from the lexical frequency and not from the
cloze-Predictability.

Secondly, the output of an AWD-LSTMmodel trained with SpanishWikipedia
and fine-tuned with a corpus of stories was included as a co-variable (Fig.
2A, M3). The t-value for this metric on the LMM was closer to the cloze-
Predictability than the wiki-Only estimation (t = −16.76). Contrary to the
observed result for the M2, the frequency effect remained significant, although
largely decreased. Furthermore, the cloze-Predictability effect on the residuals
of the LMM in M3 was smaller than in M2 (t = −9.87, Fig. 2B, M3), suggesting
that the fine-tuning improved the LSTM performance.

These effects also have an impact on the goodness-of-fit of the fitted LMMs,
estimated with the Akaike Information Criterion (AIC) for each model relative
to M0 and M1 (Fig. 2C). M2 in particular showed an increase in the absolute
AIC relative to M0 while decreasing relative to M1. This indicates a better fit
than the baseline model but worse than the Cloze Model (M1). Meanwhile, M3
showed a slight improvement in the overall fit relative to M1.

In a previous study Bianchi and collaborators [2] explored, among others, the
output of a 4-gram model as co-variable in the same corpus. For this estimation
they also found significant effects on the LMM, and a decrease in the frequency
effect (Fig. 3A, M4). To compare this ngram-Predictability (4-gram+cache)
with the fine-tuned LSTM-Predictability an additional model using this two
co-variables together was fitted (Fig. 3A, M5). By doing this, the t-values of
both computational-Predictability effects decrease but remains significant. The
LSTM-Predictability goes from −16.76 to −6.11 and ngram-Predictability from
−21.02 to −13.84. This indicates that there is partial overlap between the vari-
ance they explain in the model, but they still explain different aspects of GD.
Additionally, the drop in the Frequency effect is complete, showing that both
computational-Predictabilities relies on the lexical frequency. Finally, there was
a significant effect of cloze-Predictability when fitting the residuals of the LMMs
(Fig. 3B, M5). This suggests that the effect of cloze-Predictability on Gaze Du-
ration cannot be fully explained by any these computational models nor both
together.

4 Conclusions

On the last decades LSTM networks have allowed great advances in Natural
Language Processing tasks. Their large number of internal parameters and their
internal architecture that avoids the problem of the vanishing and exploding
gradients allow them to learn complex interactions while maintaining context
information. These advances in the NLP field open a window to the cognitive
neuroscience field to better understand how our brain processes language.

In the present work, we explored how LSTM models natural language using
its output to mimic a human-based linguistic variable. The cloze-Predictability
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is a commonly used variable in psycholinguistic research to study how our brain
process language. This variable is known to correlate with behavioural (e.g. Fix-
ation Duration) [19] and electrophysiological metrics (e.g., scalp potentials) [20].
For this study, we replaced it with the LSTM-Predictability on the statistical
models that are used to understand eye movements during reading.

Using a text corpus from the Spanish Wikipedia we trained a LSTM model
(trained-only model). This model was then fine-tuned with a small corpus of nar-
rative texts (fine-tuned model). Both models were used to estimate how probable

Fig. 3. A) t-values from two more LMMs with different sets of co-variables. M0:
baseline models. M4: baseline model and Ngram model from [2], M5: baseline model,
Ngram model, and LSTM-Predictability from the fine-tuned model. B) t-values for the
cloze-Predictability effect on a Linear Mixed Model fitted on the residuals of each of
models on A. C) AIC values for each of the fitted models on A relative to the M0 AIC.
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is each word on a set of 8 stories (LSTM-Predictabilities), previously used by
Bianchi et al. [2] for a similar analysis. LSTM-Predictabilities were used as co-
variables in a independent LMM with other linguistic properties as co-variables
and the Gaze Duration as a dependent variable.

LSTM-Predictabilities from both, the trained-only and the fine-tuned mod-
els, showed significant effects, partial overlap with the cloze-Predictability, and
an improvement in the LMM goodness of fit (measured with the AIC) relative
to baseline model. These results shows that these complex neural networks are
able to predict future words in a similar manner than humans. The partial over-
lap with cloze-Predictability indicates that these predictions are not exactly like
human predictions, but that their nature shares some relation on how they affect
eye movement variables.

Additionally, in both LMMs a decrease in the frequency effect was observed.
On the trained-only model, there was a mayor decrease of the lexical frequency ef-
fect, which became non-significant. The fine-tuned model generated a less promi-
nent decrease and the frequency effect remained significant. Thus, to predict
future words, LSTM seems to rely on lexical frequency more than humans. This
overlap with the frequency effect, which is not present on the cloze-Predictability
variable, was previously observed for the conditional co-occurrence metric anal-
ysed by Ong and Kliegl [24] and for the N-gram model by Bianchi and collabora-
tors [2]. Thus, this states a clear difference between how humans and these com-
putational models predict future words. These computational-Predictabilities
are generated, at least partially, based on the lexical Frequency of the words.
Interestingly, the difference between how trained-only and fine-tuned models in-
teracted with the Frequency effect implies that training on a corpus with certain
linguistic similarities to the testing corpus could minimise this undesirable issue.

Thus, we conclude that in order to achieve a good replacement of the cloze-
Predictability it is important to consider training or fine-tuning the computa-
tional model on a corpus similar to the tested one. A general corpus, such as
Wikipedia, will lead to rely the predictions mostly on word Frequency. Addition-
ally, our results on the AIC metric show that a computational-Predictability that
generates a better goodness of fit does not imply that the former one is better
for explaining brain processes underlying predictions. That is, a computational-
Predictability variable can explain more variance than the cloze-Predictability,
but part of the explained variance could come from other co-variables and brain
processes.

The comparison between the AWD-LSTM model presented here and the
N-gram model implemented by Bianchi showed that they explained different as-
pects of the cloze-Predictability, with some degree of overlap. The comparison
with simpler and more transparent models may also serve as a way to under-
stand complex models, like LSTM. Despite the fact that the N-gram model can
be improved, for example, by adding information about grammatical properties
of words [4], the text processing needed for this (like Part-of-Speech tagging)
is highly expensive and not robust, while modern NLP algorithms, like AWD-
LSTM, can infer this information implicitly. Additionally, algorithms based on
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neural networks have more hyperparameters (embedding size, number of layers,
etc.) that were not explored in the present study and may allow future improve-
ments.

In this line, future work must be aimed at improving the LSTM-Predictability
based on AWD-LSTM and other LSTM architectures, experimenting with dif-
ferent parameters on the training and testing phases. First, using a larger cor-
pus for the specific fine-tuning may result in a better replacement of the cloze-
Predictability, allowing us to further explore how LSTM predictions are per-
formed. Secondly, experimenting with the amount of information used by the
LSTM to predict future words would give more insight on how long dependen-
cies are used by the model and, also, by the brain. Moreover, these analyses
could be extended to more modern models, like transformers based models.

As previously stated, transformers are the results of removing the recurrent
aspect of the RNN and keeping only the attention mechanism [34]. This mecha-
nism allows neural networks to learn which elements of sequences are important
to attend to and the magnitude of that attention. Thus, transformers can be
thought as a simplification of RNN. Nevertheless, after a couple of years of its
development, the complexity of transformer architecture has increased exponen-
tially, mainly based on the parallel and serial stacking of attentional heads and
layers. Thus, state-of-the-art transformer-based architectures are highly expen-
sive to train from scratch, and it is necessary to use pre-trained models. This
could result a limitation when studying Spanish readers. Nevertheless, there is
some resources, like small- and medium-size Spanish or multilingual GPT-2 pre-
trained models available in on-line repositories7. These general propose versions
can be fine-tuned for specific domains and tasks, achieving similar results to
the ones available for English. In future works we aim to fine-tune one of these
versions with a corpus from narrative stories and corpus of other domains to
further investigate the objectives of this work.

This work is another step in the dialogue between NLP and Neuroscience,
using cognitive and physiological measures to understand NLP and vice versa,
that will which both fields [32, 10, 15, 31].
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