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Abstract.Evapotranspiration is an important component of hydrologic balance and represent essential 

information for irrigation scheduling and water resources planning. Sometimes, the use of the 

recommended Penman-Monteith method is restricted by the lack of input variables and, therefore, 

empirical methods become essential. The study aimed: a) to develop and evaluate the performance of 

models based on artificial neural networks (ANN) to estimate daily values of reference 

evapotranspiration (ET0PM) with a limited number of input variables and b)to apply methods of 

knowledge extraction based on connection weights and sensitivity analysis to better understanding of 

ANN. Daily evapotranspiration values computed following the Penman-Monteith equation (ET0PM), 

were used as target outputs for the implementation of the ANN. Data of global radiation (Rg), net 

radiation (Rn) and extraterrestrial radiation (RTA) were alternated in combinations with air 

temperature (Ta), vapor pressure deficit (DPV) and wind (u) as inputs to networksof type multilayer 

perceptron. Also, combinations with basis in RTA and minimum and maximum air 

temperatures(Tmin, Tmax) were tested. The ANN with best performance for each combination of 

inputs were retained to evaluate the performance based on multi-criteria analysis. According to the 

results, it can be concluded that it is possible to estimate accurately daily ET0PM values. Air 

temperature and deficit of pressure vapor were found to be more effective than wind velocity in 

modelling ET0, whichever the radiation (Rn, Rg or RTA) used as input. A decomposition method 

based on Garson’s algorithm was applied to quantify the relative importance for each input variable. 

Sensitivity analysis was also performed to identify relevant inputs and quantify the risk of a certain 

combination of inputs on target values. The application of complementary proceduresin evaluation of 

ANN models is discussed, paying attentionespecially on detection of the better predicting variables 

and analysis of errors.  
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1Introduction 

Evapotranspiration is an important component of hydrologic balance and represent essential 

information for irrigation scheduling and water resources planning. Several models were developed to 

predict ET0 from meteorological elements and the most recommended model is Penman-Monteith (PM) 

procedure presented in [1]. Sometimes, the use of the standard method is restricted by the lack of input 

variables and, therefore, empirical methods become essential. 

Because of need of alternative methods for dealing with missing data, some models based on 

regression have already been evaluated for climate local conditions of southeastern of rolling pampas of 

Argentina [2][3] [4] Regardless of an acceptable approximation to estimate mean values on 10-days 

period, a better approximation for daily scale is required. In this sense, the capacity of Artificial Neural 

Networks (ANN) to solve approximation problems could be a feasible alternative.The ANN are 

mathematical models inspired frombiological neurons, with computational capacity to solve problems of 

approximation, prediction and optimization [5][6].A schematic representation of neuron model is given in 

the Fig. 1.  
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Figure 1. Model of artificial neuron adapted from [5]. 

 

Mathematically, the artificial neuron can be described by the equation: 
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Where yk is the output neuron; φ is the activation function; X1, X2, ..., Xn are the input signals; and 

wij are the synaptic weight of k neuron and bk is the bias. In ANN architecture, the neurons are arranged 

in layers and are interconnected. The summing junction is used to sum up all inputs weighed by the 

synaptic weights of each neuron. The strength of connection between the two neurons in adjacent layers is 

represented by what is known as a ‘synaptic weight’. The role of the bias is either increasing or reducing 

the influence of each value for the activation of the neuron. On the other hand, the activation function 

restricts the output amplitude of each neuron and adds the nonlinear components to the model.  

The characteristics of a neural network are: structure or architecture, training algorithm and activation 

functions. The development of a model based in neural network consists in the definition of these 

characteristics. To solve approximation problems a supervised training is carried out. Inputs and target 

outputs are provided to the ANN. Training or learning of a ANN with a defined structure is achieved by 

adjusting the weights of the neurons through an iterative algorithm that minimizes the error between the 

predicted and the target outputs. The procedure used to carry out the training process is called the training 

algorithm. There are many different training algorithms with different performance.The training 

algorithm stops when a specified condition, or stopping criterion, is satisfied. For the other hand, 

activations functions for the hidden units are needed to introduce non-linear components [5][6]. 

The multilayer perceptron network (MLP) is one of the most commonly feed-forward used ANN. A 

MLP network consists of one input layer, one or more hidden layers and one output layer. The radial 

basis function (RBF) network is also a feed-forward type of ANN. The property of locality is the main 

reason why the RBF network can be learned much faster than the MLP [5]. 

A major drawback often associated with ANN is to be deficient in understanding the knowledge learnt 

by the trained network.Since the assimilated knowledge from data during training is represented by the 

network topology, the activation functions and the synaptic weights, some methods are proposed to 

extract knowledge based on analysis of synaptic weights or sensitivity analysis [7] [8][9]. 
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The objectives were: a) to develop and evaluate the performance of models based on artificial neural 

networks (ANN) of type multilayer perceptron (MLP) to approximate daily values of reference 

evapotranspiration (ET0PM) with a limited number of input variables and b) to apply methods of 

knowledge extraction based on connection weights and sensitivity analysis to better understanding of 

ANN.  

Therefore, the major contributions of this work are: (i) identify alternative methods to estimate daily 

reference evapotranspiration; (ii) discuss the ANN applicability for defining and selecting strategies of 

estimation from limited climatic data and (iii) interpret the ANN from simple knowledge extraction 

methods. 

The remaining of the paper is structured as follows: Section 2 details related works. Section 3 

describes the estimation of daily reference evapotranspiration following the standard method Penman-

Monteith. Section 4 describes the development of the ANN models and their evaluation in comparison 

with the standard method. A simple procedure of knowledge extraction from ANN is detailed in Section 

5. And, finally, the conclusions and future works are summarized in Section 6.  

 

2 Related works 

The application of neural networks in environmental problems is relatively newer than in other 

research areas, but is becoming popular because of their ability of capturing nonlinear relationships 

between the variables, and hence, providing key advantages over traditional statistical techniques. 

Specifically, the applications of ANN in water resources modeling is increasing. Estimation of reference 

evapotranspiration (ET0), the basic step toward the calculation of crop water requirements, is a case. 

Despite the reference in literature about adequate performance of ANN to approximate 

evapotranspiration under different climate conditions [10] [11] [12] [13] [14] [15] [16] [17] [18][19] [20] 

[21], only some studies carried out the estimation with limited variables.In most of studies, wind speed, 

relative humidity, air temperature and solar radiation were used as predictors. Also, minimum and 

maximum temperatures,extraterrestrial radiation, and the maximum sunshine hourswere good predictors 

[15] [21]. 

The MLP networksare usually trained to estimate evapotranspiration. However, good performances 

were reported with radial basis networks [20] [21].   

No information about interpretation of ANNis reported in most of cases.The study of how uncertainty 

of inputs affects outputs of ANN is neither described. Some physical interpretation was given in 

estimating hourly values of ET0 from ANN, following the Garson´s method [7]. Extraction of knowledge 

was also performed by analyzing the connection weightsfor a case of study on soil waterduring maize 

crop season [22]. 

 

3Target outputs of ANN: meteorological data and estimation of daily reference 

evapotranspiration  

 

The southeastern region of rolling pampas is characterized with a climate of the Cfb humid-subhumid 

type, according Köppen classification. The present study is focused at Balcarce, Buenos Aires Province, 

Argentina (37٥ 45’ S, 58º 18´ W, 130 m altitude).  

Meteorological data were obtained from a conventional weather station localized at Experimental 

Station of Instituto de Tecnologia Agropecuaria INTA Balcarce. The site includes observations of daily 

maximum and minimum air temperatures (Tmax, Tmin), relative humidity (RH), wind speed (u), and 

sunshine duration (SH). Measurements were made at a height of 2 m above the soil surface.  

The reference evapotranspiration values, that are target outputs for the artificial neural networks 

(ANN), were computed on the daily basis of Penman-Monteith method (ET0PM) for the period 1971-

2000, following the recommendations in [1]:  
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where the ET0PM is reference crop ET calculated using the PenmanMonteith-FAO56 method (mm d
−1

), 

Rn is the daily net radiation (MJ m
−2

d
−1

), G is the daily soil heat flux (MJ m
−2

d
−1

), Ta is the mean daily 

air temperature at a height of 2 m (°C), u is the daily mean wind speed at a height of 2 m (m s
−1

), es is the 

saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), is the slope of the saturation vapor 

pressure versus the air temperature curve (kPa°C
−1

 ), and is the psychrometric constant (kPa°C
−1

).  

In this study, the daily values of , Rn, es and ea were calculated using the equations (for albedo, 

α=0.23 for green vegetation surface) given by Allen et al. (1998). The soil heat flux (G) was assumed to 

be zero over the calculation for time step of 24 h [3]. The measured RH, Tmax and Tmin values were 

used to calculate ea and es.  

At Balcarce, the daily reference evapotranspiration (ET0PM) shows a seasonal pattern with maximum 

occurring in January (4.9 mm d
-1

) and minimum in July (0.8 mm d
-1

). Relative contribution of radiation 

term is dominant with values about 70% from October to March.In addition, the vapor pressure deficit 

(DPV), calculated from the difference between es and e, was the best correlated variable to 

evapotranspiration in all months[23].xx 

The series on study was finished at 2000 due the increasing missing data in more actual series for some 

of driving variables to give ET0PM. At present and as routine procedure, multiple regression models [2] 

[4] are used to complete the missing data, at the local weather station. 

 

4   Development and evaluation of ANN  

In order to specify a network structure, the relevant input variables and the appropriate number of 

hidden units respect to samples have chosen. It has been shown that only one hidden layer is required to 

approximate any continuous function [24]. Models of type MLP with one hidden layer and one output 

were utilized in this study; therefore, the size of each network was defined by the number of inputs and 

nodes in the hidden layer.  

Different combinations for two and three inputs were evaluated. As relevant inputs were firstly 

regarded the inputs to Penman-Monteith model. Two alternative inputs to substitute the effect of net 

radiation (Rn) are proposed. Then, net radiation (Rn), solar radiation (Rg) and radiation on top of the 

atmosphere or extraterrestrial radiation (RTA) were combined in the input layer with mean air 

temperature (Ta), deficit of pressure vapor (DPV) and wind velocity (u)to develop the models. The 

criteria of mandatory input of some variable linked to available energy to evaporate (Rn, Rg or RTA), in 

all ANN, was due to the predominant contribution of radiation term in reference evapotranspiration, when 

estimated by Penman-Monteith model[23]. It should be noted that it is not only important to find the best 

model to approximate ET0PM, but a set of models for situations with missing data and then to propose a 

strategy for selecting the optimal models under different situations of available meteorological data. 

The daily global radiation (Rg) values were obtained from relative sunshine hours, according a model 

adjusted for local conditions [25]. The relative sunshine was obtained as the quotient between actual 

sunshine hours and theoretical sunshine for each day of the year in the location. The radiation on top of 

the atmosphere (RTA) or extraterrestrial radiation, which only needs latitude data and day of the year, 

was also combined with maximum daily temperature (Tmax) and minimum daily temperature (Tmin), 

similar as inputs in Hargreaves method [26]. The difference between maximum and minimum air 

temperature is related to the degree of cloud cover and can be used as an indicator of the fraction of 

extraterrestrial radiation that reaches the earth's surface. 

Two types of transformed of sigmoid activation functions (i.e. logistic and hyperbolic tangent) were 

applied in the hidden layer and linear ones in the output layer. The sigmoid response, in general, allows a 

network to map a nonlinear process. A linear function was used in output. The training was carried out 

under conjugated algorithm of errors propagation using the daily values of ET0PM(period 1971-2000) as 

target output in the ANN.  



Lack of generalization can be caused by overfitting. A very common technique to avoid this defect is 

an early stopping criterion that ends training before convergence.So, each ANN architecture was trained 

under automatic early stopping criterion associated to cross validation method [27].  For this reason, the 

data set was split into sets for training (period 1971-1988), validation (period 1995-2000) and test (period 

1989-1994) to apply cross-validation. 

To investigate if partitioned subsets could disruptany pattern of data, as descriptive statistical 

characterization as correlation analysis were performed for each set. In order to evaluate the hypotheses 

of equality of frequencies distributions between values of training set with test and validation ones, 

respectively the non-parametrical Kolmogorov-Smirnov test was applied (p < 0.05).Frequencies 

distribution of ET0PM valuesfrom training set did not differ from respective test and validation sets. 

Therefore, the requirement of series to be part of the same population was attended. This fact is relevant 

because cross-validation was applied during training process, and this method is sensitive to the way that 

available data are divided [27]. Median values for target and inputs for the three sets are presented in 

Table 1.Further details of target and inputs values over complete series 1971-2000 (i.e. seasonal patterns, 

contribution of radiation and aerodynamics termsto ETPM and correlation between ETPM andinputs)are 

given in [23].Besides, relationships among target and inputs of ANN models was not different in the three 

subsets of data, as showed by the Pearson correlation coefficients reported in Table 2. For this reason, it is 

deduced that changes in subsets are not statistically evident. 

 

Table 1. Median values of daily reference evapotranspiration (ET0PM) and inputs discriminated by sets used for 

training, validation and test of ANN models. 

 

  Target  Inputs 

Set n ET0PM  Rn Rg RTA DPV Ta Tmax Tmin u 

  mm d-1  ------ MJ m-2 d-1 -------- kPa ---------- °C ----------------- ms-1 

Training 6474 2.4  7.5 14.5 29.7 0.41 14.3 19.2 7.5 2.3 

Validation 2158 2.3  7.4 13.7 29,6 0.37 14,1 19.5 8.6 1.8 

Test 2120 2.1  7.4 13.8 29.7 0.43 14.3 19.6 8.7 2.0 

 

 

Table 2.  Pearson correlation coefficients (r)between target and inputs1 discriminated by training, validation and test 

sets. 

    r coefficients for ET0PM and inputs of ANN 

Set n   Rn Rg RTA DPV Ta Tmax Tmin u 

Training 6474   0.92 0.89 0.85 0.84 0.75 0.81 0.57 0.19 

Validation 2158   0.95 0.93 0.87 0.81 0.75 0.81 0.57 0.14 

Test 2120   0.94 0.92 0.87 0.83 0.77 0.81 0.61 0.13 
1Units of correlated variables are the same as Table 1. 

The selection of ANN architectures was based on the application of a selected algorithm integrated on 

the IPS (Intelligent Problem Solver) of the Neural Network module of Statistica Software [28]. The inputs 

and the outputs of data sets were automatically normalized to improve the performance of ANN models. 

Conjugate of retropropagation of errors algorithm, a second-order nonlinear optimization technique, was 

used in training process. The software provides two random methods for initializing the weights (normal 

and uniform distributions). The normal method, followed in this work, initializes the weights using 

normally distributed values, within a range whose mean is zero and standard deviation equal to one.The 

software also possibilities the application of random or bootstrap sampling different from the used in this 

paper (cross-validation with subset sampling). There was no intention in this work to evaluate such 

variations. However, in future research the application can be tested over the ANN with better 

performances.  

 

 



 

Following the automated network search (ANS), the five models with the lowest cross-validation error 

were retained (over 2000 ANN for each combination of inputs) and then, the ANN with best performance 

for each combination was chosen and evaluated. However, weights and estimates from five better ANN 

models for each combination of inputs has been saved to future studies. 

In Table 3 are described the ANNtrained to estimate daily values of ET0PM following: a) the variables 

used as input, b) the sequence n-m-x, where n is the number of inputs, m is the number of neuron at 

hidden layer and x is the number of outputs; c) the activation function; d) number of free parameters. The 

maximum number of neurons at hidden layer was fixed at 10. In this case, training was not limited by the 

example cases (n= 6474).  Some of the ratios of the number of training sample to the number of 

connection weights cited in literature ranged from 2 to 30 [27]. Nevertheless, the ANN 16 with highest 

number of free parameters (51) did not present inconvenient with relation to examples cases. 

A more reduced number of free parameters were needed to approximate the process if radiation (Rn, 

RTA or Rg) was combined with some driving variable of the aerodynamic component of 

evapotranspiration (DPV or u), whereas than the input of another variable of radiation component (Ta) 

resulted in ANN with more parameters, except for Rg.This can be explained due multicollinear variables 

require more sized structure in the network due the presence of mutual information. 

Table 3. Description of artificial neural networks (ANN) trained to estimate daily values of reference 

evapotranspiration (ET0PM) at Balcarce, Argentina. 

ANN Inputs Structure Activation in hidden layer Number of free 

parameters 

1 Rn Ta            MLP 2-7-1 Logistic 29 

2 Rn DPV            MLP 2-3-1 Hyperbolic Tangent  13 

3 Rn Ta DPV     MLP 3-6-1 Hyperbolic Tangent 31 

4 Rn u     MLP 2-3-1 Hyperbolic Tangent 13 

5 Rn Ta u            MLP 3-4-1 Hyperbolic Tangent 21 

6 Rg Ta            MLP 2-3-1 Hyperbolic Tangent 13 

7 Rg DPV            MLP 2-3-1 Logistic 13 

8 Rg Ta DPV     MLP 3-8-1 Hyperbolic Tangent 41 

9 Rg u     MLP 2-3-1 Logistic 13 

10 Rg Ta u            MLP 3-6-1 Logistic 31 

11 RTA Ta            MLP 2-7-1 Logistic 29 

12 RTA DPV            MLP 2-4-1 Logitic 17 

13 RTA Ta DPV     MLP 3-3-1 Logistic 16 

14 RTA u     MLP 2-5-1 Logistic 21 

15 RTA Ta u            MLP 3-3-1 Hyperbolic Tangent  16 

16 RTA Tmax Tmin            MLP 3-10-1 Logistic 51 

 

The evaluation of ANN performance to estimate daily values of reference evapotranspiration was 

based on comparison of their performance estimates from FAO-56 (ET0PM). Multi-criteria analysis 

wasappliedwith basis on root mean of square error (RMSE), mean absolute error (MAE), mean bias error 

(MBE) and regression coefficients (a, b, R
2
) between estimates from ANN and measured values. The 

Student test was used to statistically evaluate the value of either the intercept (H0: a=0) or slope of the 

straight line (H0: b=1) at the 5% probability level. To assess the capacity of generalization of the ANN, 

descriptions of performance are given over both validation and test sets. 

From regression analysis and errors of estimation between outputs of the ANN and ET0PM values was 

possible to distinguish some combinations of variables with better performance. The analyses were 

carried out on both data sets (validation and test). In Table 4 are reported the results on validation set. The 

a and b parameters obtained by regression analyses between the target output and estimates from all ANN 

did not differ significantly from 0 and 1, respectively, being possible to infer that ET estimated from 

ANN did not differ from reference evapotranspiration (ET0PM). 

In general, the input of DPV provides a better performance, whichever the type of radiation used. The 

MAE values ranged from 0.2 to 0.6 mm d
-1

 were equivalent to 9 and 22% of observed mean values of 

validation series. Furthermore, the ANN models with DPV did not imply structures with high number in 

hidden layer. The combination of RTA with Tmax and Tmin did not improve the performance respect the 



model with DPV. The RTA was not input in the six best ANN of the group when ranked in function of 

minor RMSE. The difference in RMSE between the best ranked ANN with RTA (ANN13) was about 

19% and 49% and RTA in comparison to their analogue models with Rg (ANN8) and Rn (ANN3), 

respectively. The last ANN ranked in function of minor RMSE (ANN14) increased 62% the RSME 

respect their analogue combination with Rn (ANN4). The RMSE increased 20% when RTA was 

combined with Ta instead Tmax and Tmin (ANN11 vs ANN16). A better explanation from this 

combination can be associated with the humidity description from difference in maximum and minimum 

temperatures, following to [26]. 

 

Table 4.  Errors of estimation of the ANN trained to approximate daily reference evapotranspiration (ET0PM) for the 

validation set (pairs of data=2120) 

 

ANN Model MLP a 

mm d-1 

b R2 RMSE 

mm d-1 

MAE 

mm d-1 

MBE 

mm d-1 

1 ET0PM(Rn Ta)       -0.0402 0.9333 0.93 0.4790 0.3848 0.2205 

2 ET0PM(Rn DPV)            0.0168 0.9734 0.96 0.3155 0.2231 0.0506 

3 E T0PM (Rn Ta DPV)     -0.0115 0.9782 0.96 0.3045 0.2164 0.0669 

4 ET0PM (Rn u)     -0.0302 0.9750 0.91 0.4825 0.3620 0.0939 

5 ET0PM(Rn Ta u)           0.0115 0.9549 0.93 0.4303 0.3205 0.1051 

6 ET0PM(Rg Ta)           -0.0318 0.9425 0.93 0.4571 0.3600 0.1849 

7 ET0PM(Rg DPV)            0.0230 0.9863 0.93 0.4280 0.3292 0.0111 

8 ET0PM (Rg Ta DPV)     0.0052 0.9757 0.94 0.3819 0.2866 0.0564 

9 ET0PM (Rg u)     -0.0033 1.0031 0.88 0.5413 0.4138 -0.0043 

10 ET0PM(Rg Ta u)            0.0002 0.9717 0.94 0.3923 0.2960 0.0719 

11 ET0PM(RTA Ta)            -0.0403 0.9239 0.83 0.7191 0.5287 0.2479 

12 ET0PM(RTA DPV)            -0.0657 0.9955 0.92 0.4596 0.3311 0.0772 

13 ET0PM (RTA Ta DPV)     -0.0854 1.0088 0.92 0.4544 0.3312 0.0629 

14 ET0PM (RTA u)     -0.0351 0.9506 0.76 0.7826 0.5540 0.1657 

15 ET0PM(RTA Ta u)            0.0132 0.9408 0.82 0.6858 0.4977 0.1421 

16 ET0PM(RTA Tmax Tmin)            0.0061 0.9303 0.87 0.5983 0.4505 0.1794 

RMSE: root mean square error; MAE: mean absolute error; MBE: mean bias error. 

 

 

In Table 5 the results on test set are reported. The accuracy of the model on the test data gives a 

realistic estimate of the performance of the model on completely unseen data and to confirm the actual 

predictive power of the network. The a and b parameters obtained by regression analyses between the 

target output and estimates from ANN did not differ significantly from 0 and 1, respectively, being 

possible to infer that ET estimated from ANN did not differ from reference evapotranspiration 

(ET0PM).The same ANN ranking according RMSE values was maintained for test evaluation. The losses 

on generalization (RMSE of validation – RMSE of test) varied between 0 and 11%. The ANN 16 was the 

model that showed more decline in predictive power. In general, the input of DPV improved the 

performance, whichever the radiation used. The MAE values ranged from 0.2 to 0.6 mm d
-1

 were 

equivalent to 8 and 22% of observed mean values of test series. The combination of RTA with Tmax and 

Tmin did not improve the performance respect model with DPV.  

The RTA was not input in the six best ANN of the group when ranked in function of minor RMSE. 

The difference in RMSE between the best ranked ANN with RTA (ANN13) was about 20% and 56% in 

comparison to their analogue models with Rg (ANN8) and Rn (ANN3), respectively. In addition, the last 

ANN ranked in function of minor RMSE (ANN14) increased 52% the RMSE respect their analogue 

combination with Rn (ANN4), similarly to reported on validation set. The RMSE increased 19% when 

RTA was combined with Ta instead Tmax and Tmin (ANN11 vs ANN16). A better explanation from this 

combination can be associated with humidity description from difference in maximum and minimum 

temperatures.  

If daily u values are missing, the estimations from DPV based ANN are more recommended than those 

from temperature-based models. For the other hand, if daily DPV values are missing, the estimations 

from temperature models are more recommended than those from u. In cases without Rn and Rg values, 

the application of ANN with RTA is suggested, but ever with DPV as input. 



 

In estimations with basis on linear multiple regression that were previously adjusted at Balcarce [2], 

from RTA in combinations with Tmin and Tmax and precipitation, the MAE values ranged between 0.51 

and 0.65 mm d
-1

. However, the estimations for averaged 10-day values were between 0.25 and 0.35 mm 

d
-1

. Some improvements have been reported [4] when RTA and DPV were used (MAE= 0.36 mm
-1

). In 

this work, the ANN 12 (RTA and DPV) reduced in 40% the errors of estimation in comparison to that 

errors obtained from regression models previously adjusted [4]. On the other hand, ANN 16 showed 

minor errors for daily values than the Hargreaves method (same inputs) tested to estimate monthly values 

[3]. 

 

Table 5. Errors of estimation of the ANN trained to approximate daily reference evapotranspiration 

(ET0PM) for the test set (pairs of data=2158) 

 

ANN Model MLP a b R2 RMSE 

mm d-1 

MAE 

mm d-1 

MBE 

mm d-1 

1 ET0PM(Rn Ta)            0.1933 0.9764 0.92 0.4798 0.3814 -0.1323 

2 ET0PM(Rn DPV)            0.0706 0.9936 0.97 0.3075 0.2318 -0.0539 

3 E T0PM (Rn Ta DPV)  0.0987 0.9888 0.97 0.2973 0.2237 -0.0697 

4 ET0PM (Rn u)     0.2693 0.9014 0.89 0.5243 0.3999 -0.0146 

5 ET0PM(Rn Ta u)            0.1564 0.9591 0.93 0.4396 0.3404 -0.0509 

6 ET0PM(Rg Ta)            0.1727 0.9735 0.92 0.4728 0.3728 -0.1042 

7 ET0PM(Rg DPV)            0.1601 0.9469 0.93 0.4325 0.3388 -0.0229 

8 ET0PM (Rg Ta DPV)     0.1321 0.9690 0.94 0.3872 0.2962 -0.0520 

9 ET0PM (Rg u)     0.3176 0.8496 0.86 0.6057 0.4635  0.0709 

10 ET0PM(Rg Ta u)            0.1340 0.9573 0.93 0.4197 0.3192 -0.0237 

11 ET0PM(RTA Ta)            0.4885 0.8777 0.82 0.7108 0.5192 -0.1725 

12 ET0PM(RTA DPV)            0.2719 0.9354 0.92 0.4653 0.3377 -0.1050 

13 ET0PM (RTA Ta DPV)     0.2815 0.9268 0.92 0.4634 0.3390 -0.0925 

14 ET0PM (RTA u)     0.6700 0.7782 0.76 0.7939 0.5858 -0.0971 

15 ET0PM(RTA Ta u)            0.4441 0.8658 0.82 0.6917 0.5086 -0.0974 

16 ET0PM(RTA Tmax Tmin)            0.3255 0.9005 0.86 0.5987 0.4456 -0.0684 

RMSE: root mean square error; MAE: mean absolute error; MBE: mean bias error. 

 

Errors reported in this works are yet lightly larger than from ANN under other environmental 

conditions de ET0 and driving variables [15][19]. Further efforts could be made in future to regard 

components of seasonality from easily available variables, such as maximum sunshine hours (from Julian 

data) as suggested by [15] [21]. Losses of estimation from ANN with Rn and Rg as input to ANN with 

basis in RTA are not different from reported previously in anotheratmospheric environment [19].  In 

addition, networks of type BRF can be regarded with limited data [21]. In this case, deviation of estimates 

ranged from -1 a 0.1 %from Penman-Monteith values. 

 

5Extraction of knowledge from ANN models 

Once the ANN were trained on a specific network topology, then the modeling of attributes process 

using ANN involved the extracting knowledge from each network. The embedded knowledge is in the 

form of connection weights. Garson’s method [7] was performed from adjusted synaptic weights of each 

ANN. The contribution of each input neuron to the output (cijo) was computed via each hidden neuron as 

the product of the input-hidden connection (wij) and the hidden-output connection (wjo): 

 

cijo =𝑤𝑖𝑗   x 𝑤𝑗𝑜        (2) 

 



The relative contribution of each input k to hidden neuron j can be expressed as: 

 

𝑟𝑖𝑗𝑜 =  
 Cijo  

 𝑚

𝐾=1  C kjo  

       (3) 

The total contribution of input i is: 

 

𝑆𝑖 =  𝑟𝑖𝑗𝑜
𝑛
𝐽=1        (4) 

 

Finally, the relative contribution of each input is: 

𝑅𝐼 = 𝑆𝑖  𝑆𝑘𝑚
𝑘=1        (5) 

 

In Table 6 is presentedthe relative contribution (RI) of the inputs to each ANN. Despite the importance 

of radiation component in reference evapotranspiration values from Penman-Monteith method [23], the 

contribution of Rn was not predominant in the models tested with reduced number of variables (ANN1 to 

ANN5). The relative contribution of aerodynamic components (DPV and u) was similar when Rn was 

regarded in input (ANN2 and ANN4), but did not for models with Rg (ANN 7 vs ANN9) or RTA 

(ANN12 vs ANN14). When Ta was input with DPV or u, the RI values of Rn decreased (ANN3 and 

ANN5). In general, the contribution relative of Rg tended to increase in each model (ANN6 to ANN10) 

respect the same combination with Rn and other variables (ANN1 to ANN5). It was conspicuous the 

contribution the one variable to model in ANN12 (RTA) and ANN15 (u). The RI of RTA was minor 

when air temperature was input as maximum and minimum daily values than the average value (ANN16 

vs ANN11). 

 

Table 6.Relative contribution of inputs (RI) to neural network to approximate daily reference 

evapotranspiration (ET0PM). 

  RI 

ANN  Inputs Rn Rg RTA Ta Tmax Tmin DPV u  

1 Rn Ta            0.36   0.64      

2 Rn DPV            0.41      0.59   

3 Rn Ta DPV     0.16   0.47   0.37   

4 Rn u     0.45       0.55  

5 Rn Ta u            0.21   0.41    0.38  

6 Rg Ta             0.39  0.61      

7 Rg DPV             0.46     0.54   

8 Rg Ta DPV      0.41  0.20   0.39   

9 Rg u      0.61      0.39  

10 Rg Ta u             0.42  0.38    0.20  

11 RTA Ta              0.55 0.45      

12 RTA DPV              0.80    0.20   

13 RTA Ta DPV              

14 RTA u      0.33     0.67  

15 RTA Ta u              0.11 0.06    0.83  

16 RTA Tmax Tmin              0.24  0.48 0.28    

 

Sensitivity analysis was performed following procedures from the Neural Network module in 

STATSOFT [28] The program test how the neural network response (predictions) and, hence, the error 

rates would increase or decrease if each of inputs variables were to undergo a change. The data set is 

submitted to the network repeatedly, with each variable in turn replaced with its mean value from the 

training sample, and the resulting network error is recorded. The trained ANN were more sensitive to 

radiation than to the other variables (Table 7). Besides, the models performed with RTA (ANN 11 to 

ANN16) were less sensitive to radiation than those with Rg and Rn (ANN1 to ANN10). Within group of 

radiation based ANN, the estimation of ET0PM resulted more sensitive to DPV than Ta or u for models 



with two inputs (ANN2 vs ANN1 and ANN4, ANN7 vs ANN6 and ANN9, ANN12 vs ANN11 and 

ANN14). 

 

Table 7.Relative sensitivity of each artificial neural network trained to approximate daily reference 

evapotranspiration (ET0PM) to each input parameter. 

  Sensitivity to input (fraction) 

ANN  Inputs Rn Rg RTA Ta Tmax Tmin DPV u  

1 Rn Ta            0.79   0.21      

2 Rn DPV            0.68      0.32   

3 Rn Ta DPV     0.64   0.06   0.30   

4 Rn u     0.87       0.13  

5 Rn Ta u            0.70   0.18    0.12  

6 Rg Ta             0.72  0.28      

7 Rg DPV             0.63     0.37   

8 Rg Ta DPV      0.58  0.12   0.30   

9 Rg u      0.85      0.15  

10 Rg Ta u             0.64  0.24    0.12  

11 RTA Ta              0.68 0.32      

12 RTA DPV              0.55    0.45   

13 RTA Ta DPV       0.48 0.10   0.42   

14 RTA u      0.78     0.22  

15 RTA Ta u              0.55 0.27    0.18  

16 RTA Tmax Tmin              0.46  0.39 0.15    

 

 

6Conclusionsand future work 

This study evaluated the performance of 16 ANN models to approximate reference evapotranspiration 

against the standard Penman Monteith method, under the climatic conditions in the southeastern region of 

rolling pampas, Argentina. The case is analyzed to illustrate the use of the neural network technique and 

demonstrate its capabilities of effectively analyzing and predicting the reference evapotranspiration at 

Balcarce.  

Air temperature and deficit of pressure vapor were found to be more effective than wind velocity in 

modelling ET0, whichever the radiation (Rn, Rg or RTA) used as input.The results give helpful data and 

documentation to choose strategies to select the more exact ET0 estimations under limiting data 

conditions. Future efforts could be attempt to model the cases without radiation, via either adding 

seasonal components or by using adifferent type of network from MLP.  In addition, further studies from 

the region may be required to reinforce the conclusions drawn from this study. 

A description of the knowledge that was learned by the ANN during their training was obtained by 

applying simple knowledge extraction methods. An advantage of this method is that additional 

information about the model performance is obtained, including the relative contribution of inputs via 

analysis of connection weights in the ANN.  

The developed ANN models are useful to the precise agricultural water management, regional water 

resources planning, and other hydrological modeling related studies that can aid in more proficient and 

viable water resources management. Furthermore, techniques of knowledge extraction could be carried 

out in further studies to determine the types of problems where artificial neural networks would yield 

better results than other methods. The results reported here also contribute to coping with problems of 

scarce or missing data and thus can be used to guide priorities for data acquisition. 
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