
Simplified framework to evaluate software

development warranty

Pedro E. Colla

Maestría en Sistemas Embebidos – Instituto Universitario Aeronáutico

Av. Fuerza Aérea Km 8 ½ - (5000) Ciudad de Córdoba – Córdoba - Argentina (pco-

lla@iua.edu.ar)

Abstract. This article addresses a simplified framework to evaluate the war-

ranty costs of a software development process. The approach uses parameters

required by the models from metrics commonly found associated with a soft-

ware development project. Methods are proposed to extract and apply organiza-

tional baselines. The proposed framework is validated using simulation tech-

niques based on the Monte Carlo method, allowing for the assessment of the

likely distribution of the results and the sensitivity with the parameters used.

Preliminary conclusions are extracted and future lines of work identified.

Keywords: Software warranty, software development process, SEI-

CMMI™

1 Introduction

Software development organizations are required to deliver to their cus-

tomers on time, within budget and without defects in order to be consi-

dered competitive.This includes cases where the application to be de-

veloped provides complex features and other business constraints less

than ideal needs to be considered in terms of restrictions of different

sort.

The fulfillment of these requisites, often with contradictions among

them, used to be little more than an act of goodwill based on the best

effort among all the parties involved. However, the current marketplace

requirements might define the fulfillment of these conditions as the

condition making the difference between an organization to be success-

ful or not.

The software development life cycle (SDLC) must then include activi-

ties distributed in the different projectphases or stages to achieve the

goals required by customers.However, and despite significant advances

in the state of the art of software engineering technology, the chances

ofintroducing defects during the development activities are still signifi-

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 27

cant. At the current state-of-the-art it is just not possible to produce de-

fect-free software. In fact the rework required to solve the defects

found during the process as well as inadequate change management

practices can usually be traced back as the root cause for most project

troubles and failures.

At the same time, customers demand a commitment from the develop-

ment organization to provide support, fix and mitigate defects found

withinof the warranty period after the software has been delivered.

Given the increasing integration of embedded systems into industrial

and manufactured goods, which customarily requires warranty ar-

rangements to be provided as part of their commercialization offering,

it is necessary to understand how the warranty on their, now integrated,

software components.

The warranty scope ranges from the full repair at the vendor expense of

the reported unique defects or CRUDs (Customer Reported Unique

Defects) up to the recognition of penalties or compensations for the

customer to offset the expenses arising because of the impact the de-

fects found made on their business

To implement such mechanisms the software development vendors

face a heavy competitive situation where the classical approach to add

the projected expenses to fulfill the warranty into the cost is not feasi-

ble;simply because the financial profile of the market demands might

force an organization using such practice out of business. Therefore,

the financial matrix of the current market demands favors to address the

root cause, which is to deliver software with the minimum of defects

with potential to show up during the warranty period.

Among the pioneers to address the problem to forecast the software

development defects were Musa (Musa, 1987), whose models proposed

the introduction of a comprehensive validation and verification process

(testing) against a requirement set. This approach provides little in-

sights into the fundamental question of the effort and time demanded to

achieve a given defect profile, both crucial elements to define the eco-

nomic viability of a given development and testing strategy.

Robust statistical models with significant empirical validation de-

scribed at the bibliography exposes the main components required to

study this problem such as the one proposed by Tal(Tal, 2002). Tools

provided by such modeling allows for the planning, monitoring and

controlling of the testing processes to achieve any given latent defect

profile at release time which can in turn provide a reasonable balance

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 28

between the technical requirements of the software behavior in terms of

reliability as well as the financial goals of the project to be met by the

vendor.

Some authors addressed the problem of how to establish a release crite-

ria balancing the time and effort consumedin testing and the resulting

reliability to be expected after the release, being it the main driver for

the warranty costs experienced.Okumoto(Okumoto, 1980)studied the

problem from the perspective of the optimal release time under any

given reliability and cost constraint. Yamada (Yamada, 1987)suggested

a criteria to establish the optimum release time considering warranty

cost and reliability restrictions. Yang (Yang, 2000)studied the reliabili-

ty profile using software evaluation models. Tal (Tal, 2002)proposed a

statistical set of criteria optimizing the reliability of the released soft-

ware. Jain (Jain, 2001)documents a researchabout hybrid models to

predict the total operating cost to provide a given warranty requirement

including opportunity cost considerations.Popstojanova(Popstojanova,

2001)addressed the problem from the architectural viewpoint in order

to derive the factors to consider in orderto evaluate the reliability of a

given software based system. Yamada (Yamada, 1993)proposedan op-

timal release strategies depending upon the software lifecycle and the

financial opportunity cost involved for a given industry. Prince Wil-

liams (Williams, 2007)studied the problem from the perspective of

adopting testing strategies to address specific warranty periods. Pham

(Pham, 2003) proposed that the total cost of production exploitation of

the software under warranty should take into consideration the imper-

fect nature of the software test and correction process based on the life-

cycle model and some of the penalties involved.Xie(Xie,

2003)provided further insight on the impact of imperfect debugging

and its impacts on the total development cost derived from the adoption

of a given release strategy.Bhaskar(Bhaskar, 2006)gave contributions

considering the criticality of the defect based on the impact of the fail-

ure and the cost to address it during different development phases,

adopting a defined release strategy to maximize the return.

Rinsaka&Dohi (Rinsaka & Dohi, 2005)explored the problem of defin-

ing the optimum warranty scheme under different operational circums-

tances. Lai (Lai, 2011)studiedthe optimal timing for releasing a given-

software from the perspective of the reliability models.In turnBohun

(Bohun, 2004)attempted to simultaneously optimize the costs asso-

ciated with quality while satisfying multiple quality requisites.

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 29

Any strategy based on containing the defects after the release has been

made faces severe issues because of the impacts on the underlying val-

ue chain it supports, increased costs and additional effort to solve and

remove defects on a production environment(Westland,J.C., 2002).

However, the models proposed by the different authors have some chal-

lenges for their practical use as the software’s optimal release time is

often influenced by pragmatic business decisions related to the commit-

ted calendar, needs from the underlying business and budgetary con-

straints rather than the pure management of defects to satisfy some

quality parameters. At the same time the proposed model typically re-

quires parameters involved in their computation which might not be

available from the development organizations as part of their usual or-

ganizational metrics baseline.

The complexity involved in the usage of some models often looks

cumbersome enough for the organization to adopt in turn a simpler

strategy to test till the calendar allows and then release, whose poor

results do not come as a surprise.

A rational strategy to address this conundrum might be to model the

problem using a simplified framework so that qualitative results can be

evaluated, still consistent quantitatively with the real operation, and

obtained using metrics available during the project execution or being

part of their historical metrics baseline.

With this approach, an approximate number of future defects to be ex-

pected can be projected and thus the financial and technical implica-

tions that will be faced because of them afterwards can be evaluated.

With such insight, the best balance can be found under a given com-

petitive context to optimize the vendor outcome.

At the same time, and independent of the release decisions, it is impor-

tant to understand which are the parameters most relevant to manage in

order to satisfy the warranty requirements of the market the organiza-

tion chooses to serve in such a way that a profitable delivery can be

produced.

The main contribution of this article is to integrate different sources

found in the bibliography with a perspective derived from the expe-

rience in order to address some strategic questions based on simple

models and measurements usually available during the normal man-

agement of a development project.

The research questions can be stated as follows:

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 30

 What is the warranty profile allowing a given organization to

achieve a sustainable situation from their current quality para-

meters during the development process?

 What is the influence of the software product complexity and the

issues associatedwith the warranty to be provided forit?

 What is the relation between the release time and the total cost

including warranty? Which possible equilibriums can be estab-

lished based on the organizational capabilities?

2 Software reliability models

The previously discussed models proposed by the literature are useful

to forecast the reliability improvement as long as the proper parameters

are used on them. However, practical experience shows that any im-

provement in the forecast capability by increasing the complexity of the

model might be neutralized by the wide dispersion in the typical values

and variability of the parameters needed. Because of that, simpler mod-

els tend to offer a good trade-off between good qualitative and quantita-

tive results as long as they are calibrated with the metrics from the or-

ganization using them.

All models forecast defects exposed as “faults” or “errors” while the
software is executed. Assuming the number of defects injected by the

development process is unknown but finite it is reasonable to expect

that as corrections are made the total number of defects will be reduced.

This is not necessarily true as corrections and changes made would in-

ject their own share of defects. A good approximation can be obtained

assuming that under short timeframes, such as the ones involved during

the warranty period (few days to weeks) the impact of the defect injec-

tion during correction might be negligible as a first approximation. Fur-

ther discussion and validation is needed on this regard, but it is a rea-

sonable first assumption for organizations with a reasonably mature

development process in place.

Also, software reliability models express time not in terms of regular

calendar time but in terms of continuous execution time(τ), which ac-

counts for the time discontinuities introduced while the correction ac-

tivities are made. Although at the very beginning of the validation and

verification process the effective run time is limited by the stop time

imposed by the corrections made. However, the usage of calendar time

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 31

in the model is simple and effective enough to become useful despite

the small distortions introduced in the results over the entire test cycle

time. As the faults are experienced allowing defects to be exposed, then

corrections are made which fix them.Assuming as negligible the intro-

duction of new defects during the correction process the accumulated

number of defects or defect profile (ȝ) for a given time (τ) since the start

of the testing can be estimated by the following expression (Ec1) (Mu-

sa, 1987): ૄ 𝛕 = ૄ − 𝐞−ૃ𝛕

Ec1

The total number of injected defects(ȝ0) and the defect detection inten-

sity(Ȝ0) can be obtained either using linear regression over simple test-

ing sequences early in the process or using historical organizational

data. Using this model the total number of defects found, and removed,

at any given arbitrary software execution time can be evaluated.

Defect profile models will not include hypothesis around the process

used to develop the software under test. However, the development

organization could leverage their historical metrics or quantitative

management baselines to calibrate these models and acquire a broader

perspective to understand and forecast the behavior of their projects.

Almost all development organizations would capture the size of the

software (S) they produce, usually by adopting counting mechanisms

with methodologies showing a good correlation with complexity

(Hummel & Burger, 2013). The productivity(π) shall then be used to

manage the efficiency of the projects under different technologies and

environments.The total project effort (E) might then be expressed as
(Ec2):

 𝐄 = 𝛑𝑺𝜸 ≅ 𝛑𝐒

Ec2

The scaling exponent operates as a learning factor (γ)which isusually

very close to the unity when the organization performsits projects using

a relatively small number of technologies, given the organization has

experience with them.

For all practical purposes the cost and effort of a development project

would be assumed as equivalent, as typically are highly correlated be-

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 32

cause a higher proportion of the total cost is defined by the effort ex-

pended. Give the previous considerations the software producing ven-

dor organization can determine the number of defects prior to release

starting from the collection of field reports about defects escaped after

release (ȝe) compared with the defects detected during the development

process (ȝr); a ratio usually called phase containment of errors (PCE)

can be then defined as (Ec3):

PCE =
ɊrɊr + Ɋe

Ec3

This very same information can be correlated with the size or the com-

plexity of the application, using suitable metrics such as function

points(Matson, Barrett, & Mellichamp, 1994)to define the defect densi-

ty at release (δe) which can be expressed as (Ec4):

 δe =
Ɋe

S

Ec4

Combining [Ec3] and [Ec4] the total number of injected defects(μ0)can

be estimated using (Ec5)

 Ɋ0 =
Ɋr

PCE
=

Sδe 1 − PCE
Ec5

Empirical observation shows the PCE as being reasonably stable for a

given organization. Typically it can be controlled using quantitative

management methods to manage their value to fall within limits exhi-

biting a stable and capable behavior for projects within an organization

using similar processes and technologies.

The total development cycle time(τ0) can be obtained from the total ef-

fort using a relation as per (Ec6) (Walston, 1977).

 ɒ0 = KEȾ

Ec6

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 33

The calibration constants for the relation can be interpreted as the ca-

lendar efficiency (K) and a learning factor (β) and might be derived

from historical information at each organization.

The total test at release (τr) is related with the total project time with a

relation such as (Ec7): ɒr = ɓɒ0

Ec7

The test time proportion (Ȟ) can be observed as reasonably constant

across projects of similar complexities so can also be calibrated from

historical data. Combining equations (Ec2 andEc6) the average ex-

pected testing time to release as a function of the size/complexity can

be evaluated (Ec8)

 ɒr = ɋK(πS)Ⱦ

Ec8

In other words, the expected average testing time till release can be

estimated given the size of a particular project.The actual results for a

project instance might show flexibility reacting to the management ac-

tions in order to satisfy the requirements and constraints of the warranty

in the particular case.As such, the number of defects at the end of the

test (ȝr) will be defined using (Ec1)and expressed as:

 Ɋr = Ɋ0(1 − e−ɒrɉ0)

Ec9

Joining (Ec3y Ec8) it is possible to express (Ec10):

0ߣ = − 1𝜏ݎ ln 1 − 𝑃𝐶𝐸
Ec10

allowingfor the characterization of the defect behavior using a very

simple model calibrated using commonly available historical data or

metrics collected during the project management activities.

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 34

3 Warranty cost evaluation

In previous sections the testing time to release (τr) is assumed as de-

rived from the organizational metrics baseline and built from historical

series capturing representative past efforts and driven mostly by the

project size.In this way past project decisions contributed to define the

organizational capability in order to achieve results today in their par-

ticular technology and business context in terms of their performance

avoiding the injection, performing the detection and removing defects

as efficiently as possible.

However, on a project to project basis the total testing time to release is

often a management decision rather than a token given by a fixed tech-

nicaldecision. The modeling approach discussed in this article helps to

evaluate the tradeoff of reducing the costs associated with testing time

at the expense to release with a higher number of latent defects and

therefore potentially face higher warranty costs, or conversely, to im-

prove the warranty costs profile by releasing with as few latent defects

as possible with the potential to appear during the covered warranty

time by extending the testing time.The underlying assumption on this

article is that the testing time is a quality attribute subject to manage-

ment decisions and therefore one of the potential candidate factors to be

operated upon in order to optimize the total cost.

The total cost of warranty will then be related with the cost of testing

the application until the release time and to provide the services within

the agreed upon warranty time thereafter. A good modeling for such

tradeoff has been presented by Rinsaka&Dohi(Rinsaka&Dohi, 2005)

using the Rayleigh distribution proposed by Goel-Okumoto.

At the same time the different elements of cost modeling will occur at

different stances of the project lifecycle, and therefore it is relevant to

consider the financial impact produced depending on the time of occur-

rence.To account for this factor the time and risk cost of the money, or

opportunity cost, needs to be factored (Brealey R., 2015) through the

discounted cash flows using a discount rate (rTEM) of the different ex-

penditures during the lifecycle.

To estimate the total testing cost (C) it is necessary to identify the

quality attributes (q) driving it, a proposed value can be obtained from

(Ec11):

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 35

C q = C0 +
C1ɒr

Ƚ + C2Ɋr

(1 + rTEM)ɒr

Ec11

The testing environment setup fixed costs (C0) typically happens at the

beginning of the project and thus notin need of being discounted, the

cost per testing execution time unit(C1) and the total testing time to re-

lease (τr) affected by a scaling factor representing by alearning factor

(α) are assumed to be subject to management. Finally, the cost to re-

move the defects found can be obtained using the average removal cost

per defect (C2) and the expected number of defects to be found during

testing (ȝr) defined by the testing time as shown by the relation

(Ec9).The cost to remove defects can, in turn, be estimated for a given

organization either by using historical data or by tracking the rework

effort or cost of poor quality(CoPQ)and dividing it by the number of

defects found in the recent history of the project.The proportion be-

tween the CoPQand the total project effort is commonly tracked by or-

ganizations performing process improvement actions to keep it within

defined limits depending on the maturity of their operation (Knox,

1993).

The available bibliography(Westland,J.C., 2002)and practical observa-

tion support the relation between the effort to correct a defect once the

release has been made to the production environment as compared with

performing the same modification in the development environment.

The access complexity, higher level of scrutiny and authorizations in-

volved, limited time windows to perform and difficulty to recreate the

conditions to properly investigate the defectuntil the solution make the

effort to fix be higher. The model proposed to take account of this fac-

tor by raising the needed effort to fix once in production by a multiplier

named production complexity factor (ț) reflecting the cost increase be-

tween operating in a development or production environment.Then the

cost to correct defects during the production time(Cw)after therelease

while the warranty coverage applieswill be given by (Ec12):

 𝐶𝑤 = 𝐶2ߢ

Ec12

The total number of defects during warranty(ȝw) forecasted during the

warranty period (τw) can also be obtained using (Ec1):

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 36

𝑤ߤ = 𝜏𝑤 ߤ + 𝜏ݎ − ݎ𝜏 ߤ

Ec13

The total cost of warranty W(q), will also be affected by financial con-

siderations related to the opportunity cost of the money and therefore

needs to be discounted using the opportunity costwhich results in

(Ec14):

 𝑊 ݍ =
𝑤ߤ𝐶2ߢ

(1 + ݎܶ 𝐸𝑀)𝜏ݎ+𝜏𝑤

Ec14

4 Modeling the total delivery cost

To optimize the total delivery cost(Ct) a combined minimum between

the testing cost (C(q)) and the warranty cost (W(q)) for a given set of

quality attributes(q), so the following condition is met (Ec15):

 𝐶𝑡 = minݍ (𝐶 ݍ + 𝑊 ݍ)

Ec15

For the scope of this article the quality attributes(q) are considered to

be the size/complexity(S), injected defect density during development

(δ0), phase containment of defects prior to release (PCE), the total test-

ing time (τr) and the warranty time (τw)while the solution of defects will

be honored, so:

ݍ = ܵ, 𝑃𝐶𝐸, 𝛿0, 𝜏𝑤 , 𝜏ݎ

Capturing the main project processes and financial management para-

meters their influence can be evaluated. The condition for the minimum

total cost will be satisfied at release time(τr) when the first and second

derivative of the total cost as a function of the time to release satisfy the

following conditions (Ec16):

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 37

𝜕𝐶𝑡 𝜏ݎ 𝜕𝜏ݎ = 0

𝜕2𝐶𝑡(𝜏ݎ)𝜕𝜏2ݎ > 0

Ec16

5 Research method

The model discussed in previous sections has been developed and par-

tially validated by using it as a quantitative management resource for

different pilot projects. The impact of different parameter distributions

and ranges of values expected to be explored and also validated. As a

result, the final model distribution and value ranges can be configured

as a baseline for the different factors of interest. Data from over a doz-

en projects performed under a mature software production process

aimed to deliver to a very competitivemarketplace, suggests the values

used to be representative and relevant for the purpose.

Applying the equations (Ec 14) analytically, the optimal result for a

given set of parameters might be found, but the usefulness of such ap-

proach is limited because of the simplified nature of the modeland the

dispersion typically found in the parameters used, even when derived

from stable and capable processes from a single organization. Con-

versely, an analytical solution approach hides the fabric of correlations

and sensitivity between the different parameters involved in terms of

their influence over the final outcome, which is a very rich set of in-

formation to be analyzed.

To overcome this hurdle the systemic model proposed has been verified

and validated using stochastic simulation techniques where the results

shows the values and distributions for results that can be expected when

driven by ranges and distributions of the input parameters.

The table of values (seeFigure 1) shows the actual ranges and distribu-

tions used in the simulation supporting this article. This dataset is de-

rived from the set of pilot projects involved; however, each organiza-

tion can replicate the methodology just using their own set of data from

their organizational history. The proposed model has been created us-

ing generic considerations and no assumptions were made about the

underlying development process used, with appropriate validation it is

likely that with the proper parameters it can be used in a wide number

of development scenarios.

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 38

The interrelation between the organizational parameters, modeled as

stochastic variables, allows for complex interrelations between them to

emerge and the sensitivityof the influence to the final outcome to be

understood.

Validating the results, mostly using expert judgment, shows a remarka-

ble consistency withtypical results obtained from practical experience.

Therefore the results could be used to perform analysis and extract con-

clusions on the research topics.

In order to account for the ranges and distributions of the different pa-

rameters simulation techniques involved, the MonteCarlo method are

used. Triangular distributions are adopted (Sargent, 1998) for all para-

meters where only a minimum, average and maximum values are avail-

able, this distribution is recommended when there is no other clearly

defined distribution for a given variable, a best fit distribution of ob-

served data can be used when available.

The goal of the simulation is to find the total test time minimizing the

total cost for a given constellation of parameters.

In order to accommodatethe comparison of a large set of projects the

resulting release time is expressed in a normalized form compared with

the total project time (τr/τ0) withoutlosing generality but making the

result independent of the absolute magnitudes of a given project.Once

the simulation is performed with a given set of parameters a balance

between the testing cost and warranty provisions can be identified un-

der different testing durations (Figure 2 left) showingthe existence of

avalue which minimizes the total cost. For a given set of parameters it

is also possible (Figure 2 right) to observe how the extension of the

warranty period modifies the testing time needed to drive the total cost

to a minimum. The simulation is performed using 5000 stochastic tri-

als, because experience suggests this number offers a suitable balance

between the fast convergence of the results and execution time.

To capture the sensitivity relation between different variables and the

impact from the expected dispersions in the parameters, the results

from a typical simulation sessionare shown. Hence the sensitivity can

be explored between the optimal cost and the parameter ranges where

this result can be obtained.

Variable Symbol U.M. Min Med Máx

Code size/complexity S PF 10 100 250

Phase containment of errors PCE % 0,5 0,8 0,95

Initial defect density δ0 Defects/PF 0,5 1 10

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 39

Production environment complexity Κ 7 8 10

Warranty period τw Months 0.5 1 6

Discount rate (effective yearly) rTEA % Year 1% 7% 15%

Discount rate (effective monthly) rTEM % Monthly 0.00083 0.00565 0.01171

Testing to Project Time ratio Ν 0.1 0.2 0.4

Development Productivity Π Hours/PF 8 15 25

Other values used during the simulation wereα=1.05, C0=1 Staff/Mes,C1=2,09,C2=0,01,K=0.66

,β=0.5. PF=Function Points

Figure1Organizational parameters used during the simulation

Figure2Typical warranty cost as a function of the normalized test time

6 Variable influence

Once the simulation is performed the resulting distribution and the sen-

sitivity between parameters is obtained. The results can be seen

inFigure3 (left), whereasthe distribution for the most likely optimum

values for the testing time to achieve an optimal cost can be seen

inFigure3 (right).

The parameter with greatest influence on the outcome is the initial den-

sity of defects (δ0).This factor is strongly defined by the software engi-

neering practices involved during the development stages; in particular

requirements management, static testing techniques (inspections or peer

reviews) and the usage of coding pattern oriented development during

the code building phase.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

 - 0,2 0,4 0,6 0,8

C
o

st
o

 T
o

ta
l

N
o

rm
a

li
za

d
o

 (
C

t)

Tiempo Normalizado de Test (τr/τ0)

Costo Total de Garantía (típico)

C(t)

W(t)

C(t)+W(t)

 -

 2,00

 4,00

 6,00

 8,00

 10,00

 12,00

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

C
o

st
o

 T
o

ta
l

(C
t)

Tiempo de Test Normalizado (τr/ τ0)

Ct=f(τr/τ0,τw)

Ct [tw=1]

Ct [tw=2]

Ct [tw=6]

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 40

The next parameter in importance is the phase containment of errors

(PCE) which is a strong indicator of the test effectiveness and can be

improved using coverage techniques, formal testing methodologies and

project management disciplines.

Therefore, the main components for which the result shows a greater

degree of sensitivity related to the optimal provision of a software war-

ranty mostly defined by the development process and technology used

by the organization. This result, far from being surprising, is aligned

with the reported benefits of the adoption of robust software engineer-

ing and project management practices.In this regard, this result can be

employed as leverage as the conceptual justification required to justify

the investment to adopt, deploy and institutionalize a robust quality

system as a way to achieve a competitive edge.

Finally, the magnitude of the production environment complexity is

related to the optimal cost but the outcome shows little relation with it

under a wide range of complexity values. The opportunity cost, as a

way to measure the financial implications produced by the different

stages of the warranty cycle, shows a negligible influence in the out-

come, probably because the timeframes involved for the different cash

flows and their magnitude results on financial impacts much smaller

than the ones driven by other factors considered.

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 41

Figure3Variable sensitivity and normalized testing time (τr/τ0) for a

typical simulation

7 Conclusions

The analysis performed enabled usto provide a preliminary answer to

the research questions originally posted.

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 42

 What is the warranty profile allowing a given organization to

address a sustainable from their current quality parameters

during the development process?

The main drivers are the initial defect density (δ0) and the phase

containment of errors (PCE) which for a given technological

and organizational context can be optimized by adopting mature

quality processes, good development practices, tools to support

the development life cycle and component reuse as an effective

way to both reduce the code size to develop and the defects in-

jected.

 What is the influence of the software product complexity and the

issues associated of the warranty to be provided to it?

The project size and complexity (S) influences the definition of

the optimum time to test suggesting the convenience to develop

smaller components to improve the warranty profile.

 What is the relation between the release time and the total cost

including warranty? Which possible equilibriums can be estab-

lished based on the organizational capabilities?

An optimal release time can be identified for each combination

of the quality requisites, being the warranty time (tw) one of

them. All other factors being equal the duration of the warranty

increases the testing time needed to achieve a minimum total

cost.

8 Bibliography

Bhaskar, T. (2006). A cost model for N-version programming with imperfect debugging. Jour-

nal of the Operational Research Society, Vol. 57 (8), pp. 986-994.

Bohun, C. (2004). Modelling Quality and Warranty Cost (Chapter 2). En Canadian Applied

Mathemathics Quarterly V12 N1 (págs. pp. 37-66).

Hummel, O., & Burger, S. (2013). A pragmatic means of measuring the complexity of source

code ensembles. IEEE WETSoM 2013, pp. 76-79.

Jain, M. (2001). Cost analysis for repairable units under hybrid warranty. Recent developments

in Operational Research. Narosa Publishing House, pp. 149-165.

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 43

Kan, S. (2002). Metrics and Models in Software Quality Engineering (2nd Edition). Addison-

Wesley Professional.

Knox, S. (1993). Modeling the Cost of Software Quality. Digital Technical, pp 9-16.

Lai, R. (2011). A study of when to release a software product from the perspective of software

reliability models. Journal of Software V6 N4, pp. 651-661.

Matson, J., Barrett, B., & Mellichamp, J. (1994). Software development cost estimation using

function points. Software Engineering, IEEE Transactions on 20.4, pp. 275-287.

Musa, J. (1987). Software Reliability: Measurement, Prediction, Application. NY: McGraw-

Hill.

Okumoto, K. (1980). “Optimum release time for software system based on reliability and cost
criteria”. Journal of System and Software, Vol. 14, pp. 315-318.

Pham, H. (2003). A software cost model with imperfect debugging, random life cycle and

penalty cost. International Journal in System Science, V27 pp 455-463.

Popstojanova, K. (2001). Architecture-based approach to reliability assessment of software

systems. Performance Evaluation, Vol. 45, pp. 179-204.

Rinsaka, K., & Dohi, T. (2005). Determining the optimal software warranty period under vari-

ous operational circumstances. The Int Journal of Quality & Reliability Management,

pp 715-730.

Sargent, R. (1998). Verification and Validation of Simulation Models. Proceedings of the Win-

ter Simulation Conference.

Tal, U. (2002). An optimal statistical testing policy for software reliability. Demonstration of

safety critical systems, Vol 137 (3), pp. 544-557.

Walston, C. (1977). A method of programming measurement and estimation. En V. Basili,

Models and Metrics for Software Management and Engineering (págs. pp. 10-29).

IEEE Computer Society Press (EHO-167-7).

Westland,J.C. (2002). The cost of errors in software development: evidence from industry. The

Journal of Systems and Software (62 1-9), pp. 1-9.

Williams, D. P. (2007). Study of the Warranty Cost Model for Software Reliability with an

imperfect Debugging Phenomenon. Turk Journal of Electronic Engineering, V15 N3

pp 369-381.

Xie, M. (2003). A study of the effect of imperfect Debugging on software development cost

model. IEEE Trans on Software Engineering, V29(5), pp. 471-473.

Yamada, S. (1987). “Optimal software release policies with simultaneous cost and reliability
requirements”. European Journal of Operational Research, V31/1, pp. 46-51.

Yamada, S. (1993). Optimal software release problems with life-cycle distribution and discount

rate. Trans. IPS Japan (in japanese), Vol. 34(5), pp. 1188-1197.

Yang, B. (2000). A study of operational and testing reliability in software reliability analysis.

Reliability Engineering and System Safety, Vol. 70, pp. 323-329.

P. Colla, Simplified framework to evaluate software development warranty, EJS 15 (1) 27-44 (2016) 44

