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Abstract. The development of mobile applications that combine Web Services 

from different providers --also referred as mashup applications-- is growing as a 

consequence of the ubiquity of bandwidth connections and the increasing number 

of available Web Services. In this context, providing higher maintainability to 

Web Service applications is a worth of matter, because of the dynamic nature of 

the Web. EasySOC solves this problem by decoupling mashups from application 

components. However, mobile devices have energy constraints because of the 

limitations in the current battery capacities. This work proposes a model that 

builds on the benefits of the EasySOC approach and improves this latter by as-

sisting developers to select Web Service combinations that reduce energy con-

sumption. We evaluated the feasibility of the model through a case study in which 

we compare the estimations provided by the model against real energy measure-

ments and two handsets. The results indicated that our model had an efficacy of 

81-85% for the analyzed case study. 

1 Introduction 

The number of mobile devices is nearly the world population (7.3 billion). As a conse-

quence, mobile data traffic last year was nearly 18 exabytes. These facts are a conse-
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quence of the growing popularity of mobile devices [22,20]. They evolved from offer-

ing limited functional capabilities such as calendars or calculators to providing the same 

functionality as a small computer [21]. Although these devices have enough power to 

be used in distributed environments [22], in general battery-life is negatively affected 

when resource usage grows because battery capacity has not increased accordingly to 

the energy consumption of recent mobile hardware [10]. Thus, while 10 years ago bat-

tery duration was about one week, today is at most few days [10]. 

On the other hand, nowadays, mobile devices make intensive use of networking in-

terfaces such as Wi-Fi, 3G and HDSPA for accessing data and resources on the Internet 

[2,23]. However, as mentioned earlier, battery-life is a main concern in these devices, 

and networking interfaces highly affects energy consumption [1,15,17]. Thus, these 

concerns enforce the importance of energy consumption reduction in mobile devices. 

Recently, Service-oriented Computing (SOC) [6] started to become popular due to 

the ubiquity of high speed network connections. SOC is a computing paradigm that 

promotes the composition of external software components, called services, available 

and invokable through the Internet. In this context, applications are developed using 

services as the basic building blocks, decreasing the cost and maintainability of the 

development process. Additionally, development of SOC applications that combine 

services in mobile devices has been made attractive for developers because of the wide-

spread availability of Web Services --the most common technological materialization 

of SOC-- and the popularity of social networks (i.e., Facebook, Twitter, etc) and cloud 

services. These applications, which rely on a combination of Web Services from dif-

ferent sources, are called mashup applications. For example, SongDNA allows users to 

search for individual songs based on data collected from over 10 sources and obtain 

song lyrics, artist bio, links to videos and even information about what people are say-

ing about the song in Twitter.  

Broadly, despite their benefits, employing Web Services to develop mobile applica-

tions has some shortcomings because Web Service invocation is a resource demanding 

process. Moreover, these devices have limited battery-life and processing capabilities. 

In this paper, we propose an energy-aware SOC development model, which builds on 

the benefits of EasySOC [7], an approach to develop SOC applications that focus on 

maintainability by decoupling client application components from service interfaces. 

EasySOC isolates the user-provided (or in-house) application components at the client 

side from the interface(s) exposed by the provider(s) by means of service adapters 

which transform the provider interface into the expected client interface. Moreover, our 

model improves EasySOC by reducing energy consumption due to interface adapta-

tions from applications by allowing users to select the least energy expensive service 

combinations. In other words, our model focuses on adapter energy consumption. Ad-

ditionally, because of the popularity and wide spread adoption of the Android platform, 

this work focuses on Android-powered devices. 

The rest of this paper is organized as follows. First, in Section 2 we describe 

EasySOC and present the proposed estimation model. Then, in Section 3 we describe 

the experimental evaluations performed to assess the model. Finally, in Section 4 and 

Section 5 we describe the most relevant related work and the conclusions, respectively. 
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2 An energy-saving estimation model for EasySOC 

SOC promotes the reuse of software components available from the Internet, called 

services. Moreover, Web Services materialize SOC by prescribing languages to specify 

a public interface to describe the functions --operations-- and parameters required to 

invoke a service. Then, if a developer wants to build a mashup application he/she needs 

to select which available services will meet their functional requirements by inspecting 

their public interfaces. This ties the client application components with the interfaces 

of the selected services. The approach to SOC development described in [7], EasySOC, 

solves this problem by decoupling mashups from services and hence providing higher 

maintainability levels to SOC applications. The approach combines DI (Dependency 

Injection) and the Adapter pattern to isolate the user-provided application components 

at the client side from the interface(s) exposed by the provider(s). In this context, the 

approach requires to firstly define an expected interface for external services at design 

time. Then, services adapters carry the responsibility for transforming these interfaces 

into the interfaces exposed by the available service providers. 

The model we will present builds on the benefits of the EasySOC approach, but at 

the same time improves this latter by providing energy estimations to EasySOC appli-

cations. This allows users to select the least energy expensive service combination (due 

to interface adaptations), thus reducing the wasted energy during the invocation process 

and hence mashup usage. However, this work does not provide a mechanism for service 

selection, instead, it provides a model that will help developers in service selection by 

providing energy consumption estimations. 

Section 2.1 describes EasySOC [7,13]. Later, in Section 2.2 we will introduce the 

concept of micro-operation and how it relates to the model. Finally, Section 2.3 de-

scribes the model. 

2.1 EasySOC 

Although SOC simplifies application development through component composition, 

application maintainability may be affected. SOC applications rely on services that are 

invoked through an interface exposed by a service provider. However, service inter-

faces could change affecting client applications, since some of their components need 

to be adapted in order to meet the new interfaces. In this section we describe EasySOC 

[7,13], an approach that aims to isolate client application components from service in-

terfaces trough service adapters. The energy consumption of these service adapters is 

the focus of the model we will present in the following sections. 

EasySOC builds on the idea that an interesting implication of using DI in SOC is 

that client-side application logic can be isolated from the details for invoking services 

(e.g., URLs, namespaces, port names, protocols, etc.). With this in mind, a developer 

thinks of a Web Service as any other regular component providing a clear interface to 

its operations. If a developer wants to call an external Web Service S  with interface �� 

from within an in-house component C, a dependency between C and S is established 
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through ��. This kind of dependency is commonly managed by a DI container that in-

jects a proxy to S (let us say ��) into C. At runtime, the code of C will end up calling 

any of the methods declared in ��  through  ��, which transparently invokes the remote 

service. Interestingly, this mechanism is not intrusive, since it only requires to associate 

a configuration file with the client application, which is used by the DI container to 

determine which components should be injected into other ones.  

Although DI provides a fitting alternative to cleanly incorporate a Web Service into 

a client application, it leads to a form of coupling through which the application is tied 

to the invoked service interfaces (i.e., ��). In this way, changing the provider for a ser-

vice requires to adapt the client application to follow the new interface. This is illus-

trated from an architectural perspective in the left side of Fig. 1, in which the layer 

containing the business logic depends on particular proxies (grey layers are coupled to 

the underlying ones). At the implementation level, this means to rewrite the portions of 

the application that depend on ��, which includes operation signatures that are likely to 

differ from that of the new interface.  

To overcome this problem, EasySOC combines the DI and Adapter patterns to in-

troduce an intermediate layer that allows developers to seamlessly shift between differ-

ent interfaces. Conceptually, instead of directly injecting a layer of service proxies (��) 

into the application, which requires modifying the layer containing the client business 

logic to make it compatible with the service interfaces (��), EasySOC injects a layer of 

service adapters (see the right side of Fig. 1). To evidence the benefits of applying this 

approach, suppose a client application that uses a weather service to obtain information 

about the temperature. If the service provider shuts down the service permanently, it is 

necessary to change the service provider. This means that the client application com-

ponents invoking the old service must adapt to the new service interface. On the other 

hand, for an EasySOC application only the adapter of the old service needs to be 

changed, leaving intact the application components. 

 

 
 

Fig. 1. Not using (left) and using (right) EasySOC in client applications: Architectural dif-

ferences. 

A service adapter is a specialized Web Service proxy, based on the Adapter pattern, 

which adapts the interface of a particular service according to the interface (specified 

by the developer at design time) expected by the in-house components. We refer to ��� 
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as an adapter that accommodates the actual interface of a service S to the interface 

expected by an in-house component C. In other words, an adapter carries the necessary 

logic to transform the operation signatures of the expected client interface to the actual 

interface of a selected Web Service. For instance, if a service operation returns a list of 

integers, but the application expects an array of floats, a service adapter would perform 

the type conversion. 

2.2  Micro-operations 

In the previous section we have described EasySOC, which isolates the client logic 

from the service interface exposed by providers. In this context, each adapter performs 

a set of operations (from now on referred as micro-operations) to transform the signa-

ture of the expected client interface to the interface expected by the provider. 

As mentioned earlier, this work aims to create a model for estimating the energy 

consumption of Web Service interface adaptations. To achieve this, we followed three 

steps. 

First, we determined which micro-operations are involved in the adapters commonly 

built. Second, we measured the energy consumption of each micro-operation. Third, 

we applied the model explained in Section 2.3 to estimate the overall energy consump-

tion. This section covers the first step. 

Firstly, we created a catalog containing the most common operations involved in 

interface adaptations. Micro-operations were selected as a subset of the Java Grande6 

benchmark suite, similarly to the studies presented in [20]. Table 1 shows this catalog 

along with the Java equivalent code of each micro-operation. There are two groups of 

microoperations, one group containing primitive operations (i.e., cast int to float, cast 

int to double) and another group involving complex operations (i.e., create an Object, 

create an int array). In order to show the applicability of micro-operations for describing 

service adapters, let us suppose a reverse-geocoding service: 

 

– Client (expected interface): String getAddress(int latitude, int longitude). 

– Provider (real interface): String getAddress(GPSMessage_Type2 message). 

 

Fig. 2. A complex type of the expected interface and Fig. 3. Example: Adapter Im-

plementation show the structure of the GPSMessage_Type2 complex type and the Java 

code of the adapter responsible for transforming the client expected interface into the 

actual service interface, respectively. The resulting description of the necessary adap-

tation in terms of micro-operations is as follows: 

 

 
Table 1. Micro-operations catalog 

Micro-operation name Equivalent Java code 

MOP1: cast int to double 

int a; 

double b ; 

b = (double) a ; o a = (int) b; 
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MOP2: cast int to float 

int a; 

float b; 

b = (float) a; o a = (int) b; 

MOP3: cast long to double 

long a; 

double b; 

b = (double) a; o a = (long) b; 

MOP4: cast long to float 

long a; 

float b; 

b = (float) a; o a = (long) b; 

MOP5: create an Object instance Object a = new Object(); 

MOP6: assign from other instance 

public class A { 
  public int a; 
  public int b; 
} 
public class B { 
  public void foo ( ){ 

   A aInstance = new A( ); 

   a Instance.a = aInstance.b; 
 } 
} 

MOP7: assign from the same instance 

public class A{ 
  private int a; 
  private int b; 
  public foo (){ 

  a = b ; 
 } 
} 

MOP8: create a float array[n] float [n] a = new float [n]; 

MOP9: create a int array[n] int [n] a = new int [n]; 

MOP10: create a long array[n] long [n] a = new long [n]; 

MOP11: create a Object array[n] Object [n] a = new Object [n]; 

 

•  1 occurrence of MOP5: GPSMessageType2, line 11. 

•  2 occurrences of MOP1: (double) longitude and (double) latitude, lines 12 and 13. 

•  2 occurrences of MOP6: setLongitude(longitude) and setLatitude(latitude), lines 12 

and 13. 

        
Fig. 2. A complex type of the expected interface 

 
1. public class GetAddress_V2_MultipleAdapter implements IGe-

tAddressAdapter { 
2.   private ServiceMultipleConsumerProxy proxy;  
3.   public GetAddress_V2_MultipleAdapter  (ServiceMultipleCon-

sumerProxy proxy) { 
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4.     this.proxy = proxy; 
5.   } 
6.   public String getAddress (int latitude, int longitude) { 
7.     GPSMessage_Type2 msg = new GPSMessage_Type2 ( ); 
8.     msg.setLatitude((double) latitude); 
9.     msg.setLongitude ((double) longitude); 
10.     return proxy.getAddress (msg); 
11.   } 

12. } 

Fig. 3. Example: Adapter Implementation 

To conclude, in this section we have presented a catalog of micro-operations for de-

scribing data transformations and how to use this to represent an adapter in terms of 

such elemental adaptation operations. The estimation model covered in the next section 

uses these descriptions along with the energy consumption of each micro-operation as 

an input to estimate the overall energy consumption of an adapter. Also, we will expand 

this idea to estimate the energy consumption of mashups. 

2.3 Estimation model 

The model proposed in this section helps to estimate the least energy expensive com-

bination of services when building a mashup. In order to achieve this, the model relies 

in the concept of micro-operation we have described earlier. 

Formally, a Web Service mashup is a combination of one or more services from 

different sources {S1..Sn}. The EasySOC approach establishes that every service has 

associated an adapter that carries the necessary logic to transform the signatures of ex-

pected interfaces into the actual service interfaces. Formally, for each service {S1..Sn} 

there is an adapter {A1..An} each one having an energy cost, namely {C1..Cn}. Addi-

tionally, an adapter can be described in terms of micro-operations {MO1..MOp}. Then, 

the estimated energy cost of a service adapter can be calculated as C
 = ∑ CMO�
�

��� , 

where ���� is the energy cost of the corresponding ���  micro-operation. Finally, the 

overall estimated energy cost of a mashup k (��) is CME
 = ∑ C�
�
��� . 

To illustrate the model, suppose a developer who wants to select the least energy 

expensive combination of services to get information about songs (e.g., SongDNA). 

The developer wants to get links to the song videos, and the lyrics of the song. There 

are four services available, two for either category, namely {S11, S12} or {S21, S22}. Then, 

each service has an associated adapter, which can be described in terms of micro-oper-

ations:  

─ A11 = {MO1 = 1, MO2 = 5}, 

─ A12 = {MO1 = 3, MO2 = 2}, 

─ A21 = {MO1 = 7}, 

─ A22 = {MO1 = 1, MO2 = 1, MO3 = 1}. 

To determine which alternative fits the energy requirements of the developer, we 

apply the model by adding the energy cost of the micro-operations in order to calculate 

the estimated energy cost of invoking each service:  
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─ {S11 = 1 + 5 = 6}, {S12 = 3 + 2 = 5} – {S21 = 7}, {S22 = 1 + 1 + 1 = 3}. 

Finally, we calculate the estimated energy cost of each mashup alternative: 

─ M1 = {S11 = 6,S21 = 7} = 13, 

─ M2 = {S12 = 5,S21 = 7} = 12, 

─ M3 = {S11 = 6,S22 = 3} = 9, 

─ M4 = {S12 = 5,S22 = 3} = 8. 

Then, the least energy-consuming combination is M4 = {S12, S22}. 

In order to evaluate the feasibility of the proposed model, we considered a set Bk = 

{M1..Mj} composed by the alternatives that have lower energy consumption than Mk. 

We created two Mk groups, one corresponding to the estimated energy cost CME and 

another corresponding to the real energy cost CMR which we have measured from ex-

periments. Then, we compared these groups to find errors between the estimated and 

the real cases. Next section covers these experiments, and uses this approach to evaluate 

the estimations provided by the model. 

3 Experimental evaluation 

This section describes the results of the measurements for energy consumption we made 

for micro-operations along with a case study in which we applied and evaluated the 

proposed estimation model. 

Before introducing the experiments we will describe the measurement environment. 

We used a Power Monitor, a tool capable of measuring the power of any device that 

employs a lithium battery at a frequency of 5 KHz (5,000 times per second). This tool 

comes along with a software application that shows the Voltage and Amperage meas-

urements, and allows the user to export this information in different formats (e.g., 

CSV). Fig. 4 shows the experimental setup.  

 

 
Fig. 4. Power Monitor setup 
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Additionally, Table 2 shows the specifications of the devices used in the experi-

ments. The experiments were made after a device restart and executing only the essen-

tial operating system services. 

 
Table 2. Devices specification 

 Samsung I5500 Samsung I9300 

CPU 600 MHz CPU (model MSM7227-1 

ARM11) 

Quad-core 1.4 GHz Cortex-A9 

RAM 256MB 1GB 

Storage Internal 4GB, uSD 4GB Internal 16GB, uSD 64GB 

Battery Lithium 1,200 mAh Lithium 2,100 mAh 

 

3.1 Micro-operations 

Earlier, we have presented the concept of micro-operation and how use this to describe 

Web Service adapters. Also, we have mentioned that a necessary step before applying 

the model for estimating the overall consumption of a service adapter is to measure the 

energy consumption of each micro-operation. 

Table 3 shows the average energy consumption of several test runs for each micro-

operation on both devices. Note that array-related micro-operations had a fixed size. To 

ensure representativeness, we simulated the creation of arrays of size N. In order to 

achieve this, we increased the array size in one element every run (N =1 to N=64,000 

for array-related micro-operations). The standard deviation for the I9300 on dynamic 

memory-related micro-operations is somewhat high. This might be associated with the 

memory usage due to the services that the Samsung software layer adds to the system. 

 
Table 3. Energy consumption results: Micro-operations 

 Samsung I5500 Samsung I9300 

Micro-operation Power con-

sumption 

(per unit) 

(µ Joules) 

Standard 

Deviation 

(%) 

Power con-

sumption 

(per unit) 

(µ Joules) 

Standard 

Deviation 

(%) 

MOP1: cast int to 

double 

0.0876 2.2119 0.0257 1.8291 

MOP2: cast int to 

float 

0.0833 0.1507 0.0250 1.1715 

MOP3: cast long 

to double 

0.6443 0.2524 0.2683 0.1985 

MOP4: cast long 

to float 

0.6006 0.2351 0.2708 0.0629 
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MOP5: create an 

Object instance 

2.2680 1.4066 1.0348 25.4678 

MOP6: assign 

from other in-

stance 

0.0216 0.0200 0.0108 0.2862 

MOP7: assign 

from the same 

instance 

0.0199 0.0209 0.0042 0.7279 

MOP8: create a 

float array[n] 

49.7047 0.1551 294.5053 15.7948 

MOP9: create a 

int array[n] 

49.9425 0.2585 297.5589 8.5689 

MOP10: create a 

long array[n] 

97.3300 0.1422 317.5893 32.3114 

MOP11: create a 

Object array[n] 

52.1544 0.5370 557.9736 12.8078 

 

Fig. 5 compares micro-operations energy consumption of both I5500 and I9300 de-

vices measured in Joules --the work required to produce one watt of power for one 

second--. The results indicate that the scale in which different micro-operations differ 

is similar in the two different devices, e.g. MOP10 consumes almost twice as much 

energy as MOP8, MOP9 or MOP11 consume in both cases. Also, array creation micro-

operations consume more energy than any other micro-operation (about 4,800% in the 

worst case). 
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Fig. 5. Energy consumption comparison: Micro-operations. The graphic on bottom is de-

rived from the graphic on the top by excluding MOP8, MOP9, MOP10 and MOP11 

Additionally, long array creation is about 100% more energy-hungry than any other 

array creation micro-operation. This is since the memory size of the long type (64-bits 

in 32-bit systems) is twice the size of any of the other array creation micro-operations. 

This means that long arrays micro-operations require twice as much memory for the 

same array size. 

3.2 Case Study 

In this section we put in practice the above results to illustrate the utility and feasibility 

of the proposed estimation model. First, we will present a case study involving the de-

velopment of a mashup, then we will apply the model to select services, and finally we 

will compare how accurate the estimations provided by the model are compared with 
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the real energy consumption of the possible service combinations for building the 

mashup.  

Consider the three services and client-side expected interfaces from Table 4. We 

created eight mashup versions trough the combination of these services, varying the 

type and number of parameters. Table 5 shows the micro-operations involved to trans-

form the expected interfaces into the real service interfaces. However, in some cases, 

the micro-operations proposed cannot describe exactly the operations involved in the 

adapter, for example, the instantiation of user-defined types. In such cases we used the 

most similar micro-operations, considering creations of user-defined types as creations 

of Object types, for instance. Also, by basing on the results presented in Table 3, we 

applied the model and calculated the estimated cost for each service version, taking into 

account the micro-operation measurements made on both devices. The size of the arrays 

in parameters was set to 50 for all services. 

 
Table 4. Client expected interfaces 

Service Expected Interface 

Reverse Geocoding String getAddress(int latitude, int longitude) 

Send an E-mail sendMessage(String text, String subject, String[] recipients) 

Send an SMS sendSMSMessage(String text, String[] recipients) 

 

 
Table 5. Case study: Adapter estimation results 

Service 

Adapter micro-operations 

Estimated cost (µ Joules) 

Service name Version  Samsung 

I5500 

Samsung 

I9300 

1: Get a direc-

tion 

1 

• MOP5: 1  

• MOP2: 2 

• MOP6: 2 

2.4778 1.1064 

2 

• MOP1: 2  

• MOP5: 1 

• MOP6: 2 

2.4864 1.1078 

2: Send an e-mail 

1 

• MOP5: 1 

• MOP6: 52 

• MOP9: 1 

55.5456 319.1857 

2 

• MOP5: 1 

• MOP9: 2 

• MOP6: 50 

103.2330 596.6928 

3: Send an SMS 

1 

• MOP5: 1 

• MOP6: 52 

• MOP9: 1 

55.5456 319.1857 

2 

• MOP5: 1 

• MOP10: 1 

• MOP6: 52 

152.8756 877.1593 
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We measured the real energy consumption of each mashup combination. In order to 

achieve this, first, we implemented the services presented in Table 5 using Axis2 and 

the service clients using ksoap2 (SOAP services). Then, we used Apache Tomcat 7 to 

host the services, running in a server with an Athlon2 X2@2.6Ghz processor, 4 GB 

RAM, and running Windows 7. The mobile device hosting the client application con-

tacted the server through a Wi-Fi connection to a private access point. In addition, ser-

vice invocation was made in 10 groups of 1,000 invocations each (10,000 invocations). 

Also, for each possible service combination, 5 runs were made. As discussed earlier, 

dynamic memory-related micro-operations presented high deviations in the I9300 de-

vice. 

Table 6 presents the measurement results. We used the following nomenclature to 

describe a mashup: (GetDirectionVersion, SendAnEmailVersion, SendAnSMSVer-

sion). According to the results presented in Section 3.1, these results show that array 

creation micro-operations have a high impact on energy consumption. Also, combina-

tions that involve creating long arrays are significantly more energy-demanding than 

any other. 

 
Table 6. Energy consumption results: Mashups 

 Samsung I5500 Samsung I9300 

Mashup Energy con-

sumption 

(per unit) 

(µ Joules) 

Standard 

Deviation 

(%) 

Energy con-

sumption 

(per unit) 

(µ Joules) 

Standard 

Deviation 

(%) 

M1: (1, 1, 1) 5040.41 4.3760 2590.05 1.3078 

M2: (1, 1, 2) 6056.04 3.2016 3128.24 0.3112 

M3: (1, 2, 1) 5817.13 3.0445 3244.50 2.7134 

M4: (1, 2, 2) 6741.06 2.1450 3618.03 10.5014 

M5: (2, 1, 1) 4995.10 0.5860 2735.18 2.0450 

M6: (2, 1, 2) 5740.82 3.5858 3330.45 13.2837 

M7: (2, 2, 1) 5847.66 1.9406 3285.64 1.5544 

M8: (2, 2, 2) 6651.41 2.4424 3593.48 8.2845 

 

Finally, we used the formulas presented in Section 2.3 and the results of the estimations 

from Table 5 to estimate which mashup combinations have the lowest energy consump-

tion. Fig. 6 shows a comparison between the estimated and the real energy consumption 

results. The relationship between the real and estimated costs presents high similarity 

on both devices. This indicates that despite the device, the scale in which different al-

ternatives differ tends to be the same. Additionally, this relationship is a direct conse-

quence of the micro-operation measurements, which also presented the same pattern. 
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Our model was not intended to provide the exact amount of energy each alternative will 

actually consume, but to provide energy consumption estimations to EasySOC appli-

cations, allowing the developer to select the least expensive mashup combination. Thus, 

even if there is a large difference between the real and the estimated cost in some cases, 

this should not affect the results. For example, the mashup (1, 1, 1) combination is less 

energy-expensive compared to the (1, 1, 2) combination, both in the real and the esti-

mated cases. To evidence this, we used the approach proposed in Section 2.3. First, we 

created the Bk  sets:  

 

– I5500: 

• B1 = {M5} 

• B2 = {M1, M3, M5, M6, M7} 

• B3 = {M1, M5, M6} 

• B4 = {M1, M2, M3, M5, M6, M7, M8} 

• B5 = {ε} 

• B6 = {M1, M5} 

• B7 = {M1, M3, M5, M6} • B8 = {M1, M2, M3, M5, M6, M7} 

– Estimated I5500: 

• B1 = {ε} 

• B2 = {M1, M3, M5, M7} 

• B3 = {M1, M5} 

• B4 = {M1, M2, M3, M5, M6, M7} 

• B5 = {M1} 

• B6 = {M1, M2, M3, M5, M7} 

• B7 = {M1, M3, M5} 

• B8 = {M1, M2, M3, M4, M5, M6, M7} 

– I9300: 

• B1 = {ε} 

• B2 = {M1, M5} 

• B3 = {M1, M2, M5} 

• B4 = {M1, M2, M3, M5, M6, M7, M8} 

• B5 = { M1} 

• B6 = {M1, M2, M3, M5} 

• B7 = {M1, M2, M3, M5, M6} 

• B8 = {M1, M2, M3, M5, M6, M7} 

 

– Estimated I9300: 
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• B1 = {ε} 

• B2 = {M1, M3, M5, M7} 

• B3 = {M1, M5} 

• B4 = {M1, M2, M3, M5, M6, M7, M8} 

• B5 = {M1} 

• B6 = {M1, M2, M3, M5, M7} 

• B7 = {M1, M3, M5} 

• B8 = {M1, M2, M3, M4, M5, M6, M7} 

 

 
Fig. 6. Energy consumption comparison: Mashups in the I5500 (left) and the I9300 (right) 

 

Then, we compared the differences in both cases. From 27 comparisons made, there 

were 5 errors for the I5500 and 4 errors for the I9300 (errors are highlighted using red 

bars). This assessment preliminary shows that the efficacy of the model, for this case 

study, is 
��

��
 = 0.8148 ≈ 81% for the I5500 and 

��

��
 = 0.8518 ≈ 85% for the I9300.  

4 Related work 

Previous works in the area have studied 2G and 3G networks power consumption. The 

authors in [16] suggest that 2G networks reduce the energy consumption for SMS and 

voice services, while 3G networks should be the preferred option for network data 

transfers providing both speed and energy efficiency. Also, [4] proposes TailEnder, a 

network scheduler that lowers the energy consumption up to 40% in 3G networks by 

reordering mobile device’s network transfers. In the same direction, [11] improves Bit 

Torrent transfer scheduling, reducing power consumption by almost 50% with respect 

to conventional clients. Other similar studies have profiled applications network traffic 

and identified four major application energy leaks: misinterpretation of callback API 
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semantics, poorly designed downloading schemes, repetitive downloads, and aggres-

sive prefetching [25]. 

Additionally, other works have studied energy consumption in the context of 302.11 

networks, particularly, during the association process [19]. The authors claim that elim-

inating the ARP probe process from the dynamic addressing protocol could improve 

dynamic addressing power consumption by almost 400%. 

Although the works presented above aim to reduce energy consumption, they are 

focused on local device’s components. A different approach is to delegate or execute 

parts of the application on external non-mobile devices, reducing application’s CPU 

use and thus, lowering energy consumption [26]. Regardless executing tasks on exter-

nal devices seems to reduce the amount of energy consumed by an application, this 

involves data transmission, which in turn creates a tradeoff between the data and the 

computation being transferred to the external device. In this line, [27] analyzes this 

relationship by taking into account the task’s computation time (TE), the data being 

transferred (DT), the data being received (DR), and the upload and download band-

width (AB and BR, respectively). They claim that offloading a particular task would be 

worth the price when the time required for processing the task in the device is higher 

than T = DT / AB + DR / BR + TE. 

On the other hand, the implications of using SOC in mobile applications have been 

gained attention in the research community. [14] studies service invocation patterns 

claiming that in 3G networks, an effective service invocation scheduling could improve 

up to 50% the energy consumption. Other works analyzed proxy-based architectures 

for service invocation that reduce the intra-device CPU processing during the service 

invocation process, resulting in a reduction of energy consumption. The authors in [18] 

suggest two different architectures for invoking services using WSA and SMS. In the 

same direction [24] proposes a platform that relies on the Jini Surrogate Architecture 

Specification. In this context, each service has a surrogate which runs in a server con-

nected to the Internet. Then, when a client tries to invoke a service, the invocation is 

done through the corresponding surrogate, which is the responsible for the interaction 

with the service. Finally the authors in [3] combine proxy based invocation and offload-

ing improving up to 100% the service’s response latency. 

Among the works in this line, however, there is no evidence of an approach for ser-

vice-oriented mobile application development which considers energy consumption as 

a first-class citizen. 

5 Conclusions 

In this work we have presented a SOC development model for mobile devices that im-

proves EasySOC by providing energy consumption estimations. This model helps to 

determine which services or mashup combinations are less energy-hungry, reducing the 

energy consumption during the service invocation process after the applications have 

been built and deployed. 
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First, we have described the EasySOC [7,13] approach for developing SOC applica-

tions. Our power-aware enhanced model builds on the benefits of EasySOC and im-

proves this by estimating the energy consumption due to interface adaptations. In order 

to achieve this, we have proposed to describe service adapters in terms of elemental 

operations called micro-operations. Then, to calculate the overall energy consumption 

involved in an adaptation, the energy cost of individual micro-operations resulting from 

describing the adapter are summed. This is in turn used to estimate which mashup com-

binations require less energy. 

To assess our approach we measured the energy consumption of each individual 

micro-operation on two different devices, Samsung I5500 and Samsung I9300. We 

identified that array micro-operations are more energy-hungry than any others and that 

creation of larger data-types increment energy consumption. This suggests it could be 

a relationship between energy consumption and larger memory requirements. Second, 

using as an input the energy cost of the micro-operations provided by the measure-

ments, we described a case study in which we applied the proposed model. Also, we 

have validated the model comparing the estimations against the real measurements. The 

results indicated that the model had an efficacy around 81-85% for the proposed case 

study.  

This work can be extended in several directions. Firstly, we will generalize the pro-

posed model by incorporating to the catalog micro-operations that help to describe more 

precisely service adapters, for example by considering array assignation and common 

programming language defined-types such as strings or char. Also we will study the 

tradeoffs between (partially) including vs. not including service adapters in applica-

tions, and how this impacts on energy consumption, maintainability, and performance. 

Indeed, a previous study in the context of EasySOC [13] shows the trade-off between 

performance and maintainability when not using adapters, but energy should be con-

sidered alongside these two attributes.  

On the other hand, we will experiment with new device types (e.g., tablets) and new 

smartphones to further generalize the measurements results. Additionally, we will ex-

tend WSQBE [8] by providing real energy estimations for invoking services. WSQBE 

is an approach that combines popular best practices for using external Web services 

with text-mining and machine learning techniques for facilitating service publication 

and discovery. Thus, when a client searches for a service by providing the expected 

interface, WSQBE will return a similar service in functional terms but at the same time 

the least energy hungry one according to the amount of energy that adaptations will 

consume. Finally, we will extend our model to support REST Web Services [5,9], and 

we will analyze the trade-offs against SOAP services. 
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