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Abstract. In recent years, the expansion of the World Wide Web, and
web runtimes in particular, to all kind of devices has rendered the Java-
Script performance in a hot topic. Several approaches to improve the
performance of JavaScript applications have been tried by the industrial
and research communities. In this paper we review the most popular
approaches and propose a novel solution based on meta-programming
and source code rewriting. The preliminary results of our experiments
are very promising, although more studies are required to know to what
extent this approach can improve the performance of real-life JavaScript
programs.
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1 Introduction

Improving JavaScript performance have been a hot topic in recent years. The
ubiquity of the World Wide Web, and web runtimes in particular, across all
kind of devices in addition to the increasing complexity of applications written
in JavaScript have drawn attention of the industrial and research communities
towards the improvement of JavaScript performance and security.

In this paper we focus on the performance aspects of this problem. Here we
propose a novel solution based on meta-programming and code rewriting, show
some preliminary results based on a small set of experiments, and then review
other approaches and compare them with our proposal.

Most of the work done to boost the performance of JavaScript programs
has been focused on improving the compiling & execution infrastructure. Such
approach is implemented, for example, by the Safari SquirrelFish runtime [10],
the just in time (JIT) compiler Google V8 [17], and also applied on the trace-
based optimizations [9] by the Mozilla team. A different approach, also tried by
Mozilla, is implemented in asm.js [13]. This language is a JavaScript subset from
which highly efficient code can be generated on the fly. Moreover, Intel improves
the performance by adding new extensions to the language, like SIMD [5] (Single
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Instruction - Multiple Data) instructions or support for parallel execution [12]
of certain APIs (Application Programming Interfaces).

Our work, on the other hand, explores the feasibility of improving JavaScript
performance by using source code rewriting techniques at compile time, well
before the source code reaches the JavaScript runtime. We found several cases
where performance is highly sensitive to the way in which the programmer writes
the code. For example, as we show in Sect. 2, using the for-in statement to
iterate an array object is at least 25 times slower than using a standard C-style
for to iterate the same array. Even more remarkable, different APIs generat-
ing the same, or semantically similar, results can show a big difference in ex-
ecution times. For example, using the API document.getElementByTagName

to find elements in the DOM can be 200 times faster than using the API
document.querySelectorAll.

Therefore, we propose to improve the performance of JavaScript programs
by analysing this kind of cases, which are out of reach of JIT compilers and
runtimes. To test our hypothesis we initially identified a number of patterns
amenable of being optimized, and then implemented a set of simple experiments
to check the performance gains. Once we shown that replacing slow patterns
with the fast ones provided measurable performance benefits, we designed and
implemented a general tool to easily automate this refactoring. The tool, named
PumaScript [29], is a JavaScript dialect extended with program introspection and
rewriting capabilities. Finally, by using PumaScript we were able of using meta-
functions to automatically rewrite slow code with faster, semantically equivalent
code.

In the following section we describe in detail the patterns we discovered and
the code that can replace them. The third section is devoted to explain the
implementation of PumaScript and how to use meta-functions to rewrite slow
code. In the fourth section we propose to apply our framework to security issues.
Then, in the fifth section, we review in more detail the related work, analysing
different approaches to solve the same problem and showing their advantages
and disadvantages. Finally, we close this paper by reviewing our results and
proposing future lines of work.

2 Analysis of JavaScript Patterns

In this section we compare the performance of several code patterns with se-
mantically similar code but with different execution time. We also analyse and
propose solutions for some of the cases, where the semantics is not exactly the
same but the expected effects are similar.

Currently, we have identified five JavaScript patterns that are semantically
equivalent but with very different execution time. The patterns are shown in
Table 1. The first column of the table gives a number to the pattern, while the
second column describes the pattern in words. The third column of the table is
divided in two rows: the upper row shows the original, slower code, while the
lower row shows faster, semantically equivalent code.
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# Pattern description Original & Improved Code

1 Native selector by ID vs
jQuery ID selector

Original Code
$("#test");

Improved Code
$(document.getElementById("test"));

2 Iterate an array using
for in vs C for

statements

Original Code
var array = [1,2,3 ...];

for (var i in array) {
array[i] +=1;

}
Improved Code
var array = [1,2,3 ...];

for (var i=0; i<array.length; i++) {
array[i] +=1;

}

3 Round an integer using
parseInt vs bitwise
operator

Original Code
var number = Math.random() * 1000;

parseInt(number);

Improved Code
var number = Math.random() * 1000;

number | 0;

4 querySelectorAll vs
getElementsByClassName

Original Code
var items = document.querySelectorAll(".test");

Improved Code
var item = document.getElementsByClassName("test");

5 querySelectorAll vs
getElementsByTagName

Original Code
var items = document.querySelectorAll("test");

Improved Code
var items = document.getElementsByTagName("test");

Table 1. JavaScript patterns in their original and improved form.
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In order to measure the differences between running times, we created and
ran simple, synthetic programs for each pattern. The observed performance im-
provements for the five patterns are shown in Table 2.

Trying to avoid result bias due the hardware and runtime implementation,
each test was executed on several browsers on different computers. We used
two desktop browsers and two Android browsers. The hardware used to run on
desktop browsers was a notebook Lenovo T430, 4GB RAM, processor Intel Core
i5-3320M 2.60Hz, with Windows 8 operating system. To execute on Android
browsers we used a Tablet Asus MeMO Pad 7 with an Intel Atom Z3560 1.83GHz
quad core processor, 2GB RAM and Android 4.4.2.

Pattern # PC

Chrome

v36

PC

Mozilla

v30

Android

Tablet

Native

Browser

Android

Tablet

Chrome

v36

1 2.15x 1.49x 1.98x 1.79x

2 55.54x 167.60x 27.96x 25.26x

3 12.91x 33.30x 11.24x 4.75x

4 138.88x 364.97x 915.23x 394.26x

5 236.16x 393.29x 213.69x 146.89x

Table 2. Improvement rate for each pattern comparing slow and fast code.

As it can be seen in Table 2, the pattern #1 (using a Native Selector by ID
vs a jQuery ID selector) almost doubles the performance of the code, without
regard of the browser or hardware used.

Pattern #2 (using a for-in statement vs a standard C-style for) has an
improvement of 20x on the Android Tablet, but it shows greater differences yet
on the Mozilla browser running on the PC: a 167x improvement over the original
code.

The performance improvements on pattern #3 (using parseInt vs a bitwise
operator to round an integer) are more regular: from 4.75x on Android-Chrome
to 33.3x on PC-Mozilla.

Pattern #4 (querySelectorAll vs getElementsByClassName) shows both, an
impressive improvement on performance on all tests and a peak of 915.23x on
the Android Tablet with a native browser.

Finally, pattern #5 (querySelectorAll vs getElementsByTagName) shows
more regular, although high improvement values. The running times are between
146x and 393x.

It is noteworthy than the improvement in performance between the slower
and the fastest version of a pattern ranges between 1.49 times for the worst case
(pattern 1 on a desktop PC with a Mozilla browser) and up to 915.23 times
for the best case (pattern 4 on an Android tablet). A careful selection of the
patterns to replace can have great impact on the performance of the JavaScript
code.
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Moreover, there is no test setting showing the best improvement in all cases.
Table 2 shows in boldface the best improvement for each pattern. The only test
setting that was not the best in any of the patterns was the Android Table with
the Chrome browser.

2.1 Solving Semantic Differences

Notice, however, that patterns 4 and 5 are optimistic transformations, since the
original and improved code will generate the same result most of the time, but
not always. This discrepancy exists because the querySelectorAll method re-
turns an instance of a NodeList object, while getElementsByClassName and
getElementsByTagName return an HTMLCollection object. Both objects, Node-
List and HTMLCollection are similar, since both are collections containing the
properties length and item(), which are used to get the number of items in the
collection and to get an specific item, respectively. But because both collections
use different constructors, a code that checks for the instance type of the collec-
tion can fail in the translated version.

Another consideration to take in account is that HTMLCollection objects are
live collections, that is, when the DOM (Document Object Model) is updated
the collection is updated. For example, after retrieving all nodes with class name
class1 by using the getElementsByClassName method, if a new node with class1
class name is added to the DOM, the collection will be automatically updated.

Although for most cases the differences between HTMLCollection and Node-
List will not change the semantic of the program, it may be the case. For-
tunately, there is a way to circumvent this semantic difference between the
two collection types. When rewriting calls to querySelectorAll into calls to
getElementsByClassName or getElementsByTagName, it is possible to wrap the
returned collection with a new NodeList collection. Figure 1 shows the method
createNodeList, which converts an HTMLCollection object into a NodeList
collection.

function createNodeList (elements) {
var fragment = document.createDocumentFragment();
for(var i; i < elements.length; i++)

fragment.appendChild(elements[i]);
return fragment.childNodes;

};

Fig. 1. Function that converts an HTMLCollection into a NodeList.

After applying these changes to patterns 4 and 5 and running the tests again,
we found that some previous improvement rates were down. For example, in a
PC using Chrome the execution time was down from 138.88 times faster to a
more conservative 17.2 times faster. Still, there is a sizeable improvement in
performance when using getElementsByClassName or getElementsByTagName
methods instead of querySelectorAll.
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3 Implementing a Meta-Programming and Rewriting

Infrastructure

The experiments and tests mentioned in the previous sections were done by
hand, just writing the different examples and running each program with the
same dataset on different test settings. As we understand that rewriting the
code, even for a more efficient version, is usually not an option on a production
environment, we created a tool to automate the process.

In order to accelerate the process of rewriting the identified slow patterns,
we designed a new JavaScript dialect and implemented a rewriting infrastruc-
ture. The resulting framework, named PumaScript, provides a general tool to
experiment with code introspection and meta-programming applied to improving
language performance.

PumaScript main feature is the support for meta-functions, a mechanism
similar to the programmable macro-expansion systems available in Lisp [11],
Ruby [26], and other programming languages. Like other macro systems, PumaScript
meta-functions can expand caller expressions in-line. When called, a meta-function
takes the decorated Abstract Syntax Tree (AST) of the arguments and returns
an AST to be used as a replacement for the caller expression.

However, there are two key differences between PumaScript meta-functions
and other macro systems:

1. Under certain conditions, a PumaScript meta-function can choose not to
expand a certain occurrence of a caller expression, returning a null value
instead of an AST.

2. PumaScript does not have a special macro-expansion phase before fully exe-
cuting the program. Instead, meta-functions are live functions just like nor-
mal functions, and they can be called any time during the lifetime of the
program.

PumaScript meta-functions can execute any arbitrary computation, includ-
ing calling other normal functions or meta-functions. Additionally, all meta-
functions have access to special intrinsic functions which provide access to the
AST of the program for introspection and re-writing of any portion of it.

Figure 2 shows a simple example of PumaScript meta-function. This meta-
function rewrites all its calls (sum(x,y)) into an addition expression (x + y).

The current high level execution flow of PumaScript is shown in Fig. 3. We
use the Esprima library [14] to parse the JavaScript-like (JavaScript plus meta-
functions) syntax. Afterwards, our own PumaScript runtime is used to execute
the AST following the standard JavaScript semantics, plus the additional rules
and semantics added by our extension language. Once the program is executed,
PumaScript runtime discards the meta-functions nodes of the AST, and the re-
sulting Decorated Syntax Tree (DST) is processed by the Escodegen library [28]
in order to pretty print the program into standard JavaScript.
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/* @meta */
function sum(a, b){

return pumaAst( $a + $b);
}

/* The following call to sum(5, 6),
will expand to the 5 + 6 expression */

sum(5, 6);

Fig. 2. A simple meta-function and its invocation.

JavaScript
+

meta-
functions

Fig. 3. PumaScript program execution workflow and high level modules.
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3.1 PumaScript Meta-Functions

As seen in Fig. 2, PumaScript meta-functions are written just like normal JavaScript
functions, with the annotation @meta in a comment before the function decla-
ration. This method is used to avoid introducing a new syntax requirement,
making our meta-programming language backward compatible with standard
JavaScript.

As previously stated, meta-functions work in a similar way than regular
JavaScript functions, with three specific differences:

1. All its parameters will evaluate to a reference into the caller argument DST
at execution time. For example, when calling the meta-function foo(a,b)

with actual argument expressions (2 * x) and (3 * y), the parameter a

will take the value of the syntax tree for (2 * x) and the parameter b will
take the value of the syntax tree (3 * y). Other example can be seen below
(Fig. 4).

2. All meta-functions must return a valid syntax tree or null. If the return value
is null, then the caller expression will not be rewritten. Otherwise, if the
return value is a non-null syntax tree, the caller expression will be replaced
with the returned syntax tree, actually rewriting the caller expression in the
process.

3. Our meta-functions have access to a reserved context with intrinsic objects
and functions. These reserved elements can be used to make program intro-
spection or to rewrite any portion of the program. Some intrinsic objects
and functions available in the meta-function context are: pumaAst, context,
and pumaFindByType.

The example of Fig. 4 shows a meta-function that can return null. The meta-
function firstLetter rewrites its caller only if the actual argument is a string
literal. As it can be seen in the figure, in the second call the function returns
null and then the caller is not rewritten.

As an example of use of intrinsic objects and functions, Fig. 5 shows the meta-
function countForStatements. This meta-function counts all the occurrences of
for statements in a script and shows the resulting number by using the standard
console object. In this example we use the intrinsic function pumaFindByType

and the intrinsic object pumaProgram. These functions and objects can be used
to introspect any portion of the program, not only the current context that is
calling the meta-function.

3.2 Rewriting Code

In this section we describe how automatic rewriting of the patterns presented
in Table 1 was implemented using the PumaScript framework. For each pattern
we had to write a meta-function that replaces the slow code by the faster code,
taking in account the context where the code is used. For clarity and space
reasons, we only explain in this paper the meta-functions developed for the first
two patterns shown in the aforementioned Table.
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// Program sent to PumaScript

/* @meta */
function firstLetter(valueExp){

var ast = null;
if(valueExp.type === "Literal"){

ast = valueExp;
ast.value = ast.value.substring(0, 1);

}
return ast;

}

// This call will be rewritten to "H";
firstLetter("Hello World");

// This call will not be rewritten because
// the argument expression is not a literal
firstLetter("Hello " + "World");

// Output of PumaScript
"H";
firstLetter("Hello " + "World");

Fig. 4. A meta-function replacing string literals and its invocations.

/* @meta */
function countForStatements() {

var forStas = pumaFindByType(pumaProgram, "ForStatement");
console.log("For statements found: " + forStas.length);
return null;

}

Fig. 5. Meta-function counting the number of for statements in a program.
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Pattern 1 - Rewrite jQuery Selector Calls: Figure 6 shows a meta-function
that rewrites jQuery selectors by Id into the more efficient JavaScript native API
document.getElementById. Line 6 checks that the actual argument is a Literal
node and tests for the regular expression used to match selectors by Id. By
executing the then branch, it removes the # character from the beginning and
returns a new abstract syntax tree (AST) using document.getElementById and
the provided argument with the modified string literal. The intrinsic function
pumaAst is used to build the returned AST, starting from a template where the
local variables are expanded with their actual values.

/* @meta */
function $(valueExp){

var regex = /^#\b[a-zA-Z0-9_]+\b$/;
var argValue = {};
var substr = ’’;

if(valueExp.type === "Literal" && regex.test(valueExp.value)){
valueExp.value = valueExp.value.substring(1);
return pumaAst($(document.getElementById($valueExp)));

}
else if(OPTIMISTIC_REWRITE){

argValue = evalPumaAst(valueExp).value;
if(regex.test(argValue)){

console.log("WARNING: Optimistic rewrite at line("
+ valueExp.loc.start.line + ")");
substr = valueExp.substring(1);
return pumaAst($(document.getElementById($substr)));

}
}
return null;

}

Fig. 6. Meta-function to rewrite jQuery selectors by Id.

The simplest use case happens when the meta-function is called with a simple
string literal argument.

// Invocation with literal
var myElement = $("#Element_Id_1");

In this case, it is always safe to rewrite the invocation. Therefore, the execu-
tion of the meta-function of Fig. 6 will follow the then branch of the if-else

statement of Line 6.
On the other hand, when the actual argument is not a simple literal, the

meta-function uses the intrinsic function evalPumaAst to evaluate any portion
of AST in the current execution context. In this case, it uses a flag variable
OPTIMISTIC REWRITE to enable optimistic rewriting when it can check that at
least one execution of the caller expression matches the selector by Id form.

For example, the following invocation may not be safe to rewrite if the vari-
able element id is an argument into a function. Thus, by using the evalPumaAst
intrinsic function in Line 11 of Fig. 6, the meta-function can detect that the call
is safe to rewrite into a more efficient API call.
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// Invocation with non-trivial expression
var element_id = "5";
var myOtherElement = $("#Element_Id_" + element_id);

Finally, there are cases where the selector does not match a simple selector
by Id, as in the following example.

// Invocation that does not match a selector by Id
var myOtherClassElements = $(".Class_Id_" + element_id);

For this invocation, the meta-function is capable of identifying the problem
easily: no matter what value the variable element id takes, it will not form a
valid selector by Id.

Pattern 2 - Rewrite for-in Statements: In order to implement the au-
tomatic rewriting of for-in statements into C-style for statements, a differ-
ent approach is needed. It is not possible to use a meta-function like a macro
call which rewrites the caller expression. Instead, the meta-function to rewrite
for-in statements needs to use intrinsic functions provided by the PumaScript
runtime environment to analyse the AST of the running program while detecting
and replacing each for-in sentence in the program.

Figure 7 shows the main meta-function used to rewrite for-in statements.
In line 3, it uses the intrinsic function pumaFindByType and the intrinsic object
pumaProgram to match all AST nodes whose type is ForInStatement. Then, the
function iterates on this list and uses a helper function to rewrite each for-in

subtree in the program.

/* @meta */
function rewriteForIn() {

var forIns = pumaFindByType(pumaProgram, "ForInStatement");
console.log("For In statements found: " + forIns.length);

for(var i = 0; i < forIns.length; i++) {
rewriteSingleForIn(forIns[i]);

}
return null;

}

Fig. 7. Main meta-function to rewrite all for-in statements.

The helper function to rewrite a single for-in statement, shown in Fig. 8.
This function has four main steps:

1. It detects if the for-in statement uses either a variable declaration or an
existing variable as the iteration reference.

2. It creates a new AST for an equivalent C-style for statement.
3. It creates an if statement that will be used as type guard to fallback into

the original for-in if the type of the collection expression to be iterated is
not an array.
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4. It replaces the original for-in AST node with the generated if AST node.

Note that the function in Fig. 8 is not marked as a meta-function, as our
language extension can arbitrarily mix meta-functions with normal JavaScript
functions.

function rewriteSingleForIn(forInAst){
var left = forInAst.left;
var right = forInAst.right;
var itemName;
var tempId;

// Detect which kind of iteration variable it uses
if (left.type === "Identifier") { itemName = left;}
else if (left.type === "VariableDeclaration") {

tempId = left.declarations[0].id;
itemName = pumaAst( $tempId );}

else {return;}

// Prepare fallback version and optimized AST
var cloneForIn = pumaCloneAst(forInAst);
var optimizedFor = pumaCloneAst(forInAst);

optimizedFor.type = "ForStatement";
optimizedFor.init = left;
optimizedFor.test = pumaAst($itemName < $right.length);
optimizedFor.update = pumaAst($itemName = $itemName + 1);

// Create type-guard to test runtime type
var temp = pumaAst(function(){

if (Array.isArray($right)) $optimizedFor;
else $cloneForIn;});

var tempIf = pumaFindByType( temp, "IfStatement")[0];

// Replace original node with type-guarded one
forInAst.type = tempIf.type;
forInAst.test = tempIf.test;
forInAst.consequent = tempIf.consequent;
forInAst.alternate = tempIf.alternate;

}

Fig. 8. Helper function to rewrite a for-in statement.

To apply this rewriting meta-function, Fig. 9 shows an example of a client
program that calls the meta-function to rewrite all the program’s for-in state-
ments. The output obtained from running the program is shown in Fig. 10.
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var array = [1,2,3,4,5,6,7,8,9,0];
var i = 0;

// Test for-in with existing iteration variable
for(i in array){ array[i] += 1;}

// Test for-in with new iteration variable
for(var j in array){ array[j] += 1;}

// Call to meta-function to optimize for-in
rewriteForIn();

Fig. 9. Client program which uses the rewriteForIn meta-function.

var array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
var i = 0;

if (Array.isArray(array))
for (i; i < array.length; i = i + 1) { array[i] += 1;}

else
for (i in array) { array[i] += 1;}

if (Array.isArray(array))
for (var j; j < array.length; j = j + 1) {

array[j] += 1; }
else

for (var j in array) { array[j] += 1;}

Fig. 10. Output generated by PumaScript after running the program of Fig. 9.

4 Applying PumaScript to Security Issues

In this section we show how our approach cannot only used to improve the
performance of JavaScript programs, but also the system security. In the most
direct case, we detect insecure patterns and replace the dangerous code by us-
ing PumaScript meta-functions. But we went a step ahead and modified our
PumaScript framework in order to deal with the security issues associated to
dependency injections.

4.1 Detection of Server-Side Insecure Patterns

Since our PumaScript framework allow us to detect certain patterns in the code
and rewrite the program with other piece of code, we can use it to replace known
insecure code by other, more secure, semantically equivalent code.

As an example we applied our approach to validate server-side (back-end)
code written in Node.js [8]. This language was selected because its runtime was
implemented by using Google’s JavaScript V8 Engine [17]. We detected two
known insecure code patterns: setInterval(String, Int) [20] function and
the lack of use of use strict mode.

Replacing setInterval() Function The setInterval function is insecure
because it uses the function eval(). This function allows user input to be eval-
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uated unchecked. If the input is malicious JavaScript code, the code is executed
and the system can be compromised. By using the alertSetIntervalVulnerability
meta-function defined in Fig. 11, PumaScript rewrites the code to show a se-
curity warning in the execution console every time an insecure setInterval

function is executed.

/**
* @meta
*/

function alertSetIntervalVulnerability(){
var newFunctionPuma = puma.pumaFindByType(pumaProgram, "ExpressionStatement");
for (var index = 0; index < newFunctionPuma.length; index++){

findSetIntervalVulnerability(newFunctionPuma[index]);
}
return null;

}
function findSetIntervalVulnerability(setIntervalAst){

var expression = setIntervalAst.expression;
if (expression.type === ’CallExpression’){

var name = expression.callee.name;
if (name === ’setInterval’){

var parameter = expression.arguments*;
if (parameter.type === ’Literal’){

console.log(’The defined setInterval function is a potential security problem.’);
}

}
}

}

Fig. 11. Meta-function to detect the use of setInterval() function.

Strict Mode Case When developing with Node.js, it is important to use the
strict mode to opt for a restricted version of JavaScript. This version allows
detection of code errors and also increase the performance of the program [21].
As shown in Fig. 12, we can use PumaScript to validate that JavaScript is being
edited under the strict mode. Again, the result of PumaScript detection will be
shown in the console as a warning.

4.2 Dependency Injector

Nowadays, most of new web based solutions are created by integrating libraries
published by third parties for different purposes [24]. However, this practice is
not without risks. In fact, the biggest and most popular publisher of JavaScript
third party libraries, the node-package-module (npm) [22], does not ensure any
security level as it does not perform safety checks on any of the packages that
it publishes. This is a huge problem for the security and integrity of the sys-
tems that use this package manager. Making things worse, most key libraries
do not provide a really high security level, since they do not perform any safety
check [31].
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/**
* @meta
*/

function alertStrictModeNotFound(){
var flag = false;
var newFunctionPuma = puma.pumaFindByType(pumaProgram, "ExpressionStatement");
for (var i = 0; i < newFunctionPuma.length; i++){

if (newFunctionPuma[i].expression.raw === "use strict"){
flag = true;
break;

}
}
if (flag === false){

console.log("Strict mode not activated")
}

}

Fig. 12. Meta-function to determine if strict mode is being used.

The combination of the JavaScript ecosystem growth and the missed security
checks presents an open door for successful cyber-attacks. For example, during
the attack on the Content Management Systems (CMS) platforms, an estimated
of 4.5 millions of WordPress and Joomla users were hacked by using jQuery, the
most popular library in JavaScript, to inject malicious code in their websites [1].

Today, it is a common practice for web solutions to use Content Delivery
Networks (CDN). Their purpose is to provide web-pages or web content, such
as JavaScript libraries to end-users with high speed and availability, by applying
caching techniques.

Despite the fact that dependencies are a big part of the developed software,
there is no a clear unique solution to prevent attacks on CDNs [15] or to avoid
including a library containing malicious code. This problem is very common and
affects the integrity and security of systems. It even can be used to produce a
Distributed Denial of Service (DDoS) attack [23] on external systems by using
reflection and amplification techniques [7]. Several dependency injectors, such
as RequireJS [27], help with the task of modularizing and solving dependencies,
but they do not apply security checks for third party dependencies.

To make thing worse, outdated dependencies, which leave systems vulnera-
ble to exploits by hackers, are a very common problem [18]. This problem has
been exacerbated in the last ten years due the proliferation of sources of software
dependencies and the inability to make automated upgrades when security prob-
lems are discovered. Thus, developers have to keep up to date with the latest
news about security issues and continually upgrade the security checks in their
software. A solution to this problem would be a tool providing automated checks
and upgrades.

We tackle the problem of the lack of dependency injectors with built-in secu-
rity checks for third party dependencies. In particular, we can provide a way to
automatically include and perform security checks for JavaScript libraries used
in web solutions. To do so, we extended our PumaScript framework to include
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meta-functions as checks for third-party libraries’ integrity, avoiding malicious
code injection.

In order to use PumaScript to detect security issues described in the previous
section, we developed some models and iterated on them in order to discover the
better approach. The first iteration included as parameters the list of dependen-
cies and a fixed CDN. Thus, PumaScript meta-functions were hardcoded in the
runtime and the user was not able of changing the configuration. The second it-
eration included the parametrization of the CDN, while the meta-functions were
taken from a meta-function database expressed in a JSON format file. The third
and final iteration added integrity checks for external resources as described in
the 2016’s recommendation on Sub-Resource Integrity (SRI) [30].

The system includes the capability of getting the integrity checks from a
PumaScript database and injecting the dependency only if the security and in-
tegrity are confirmed. The security features that PumaScript must test is passed
as a list of meta-functions that the PumaScript injector will look for in the
meta-function database. Thus, it will be able of automatically add them to the
application to test.

5 Related Work

To our knowledge, source-to-source code rewriting techniques were never before
used to improve JavaScript performance. However, other approaches have been
developed previously to improve the performance of JavaScript programs. In
this section we review other source code rewriting tools, describe commonly
used JavaScript pre-processing tools, and analyze the most relevant approaches
to compare them with our proposal.

5.1 Rewriting and Pre-processing Tools

Source Code Rewriting Frameworks: A number of existing frameworks and
tool chains can be used to implement end-to-end source code cross-compilation or
refactoring. Stratego XT [3] and DMS [2] are two of the more mature frameworks
to build source-to-source transformation tools applying rewriting techniques.
The main strength of these frameworks is their flexibility, as they provide end-
to-end tools to build parsers, rewriting scripts, semantic analysers, and pretty
printers. Our approach, as implemented by PumaScript, is simpler and does not
aim to be a generic tool to transform from any source to any possible target. It
is focused in JavaScript language rewriting.

As a disadvantage, to build an end-to-end JavaScript-to-JavaScript tool with
these frameworks requires an important amount of work, because every major
component must be created using only these tools. In contrast, for the imple-
mentation of PumaScript we reuse existing and tested components, such as the
Esprima parser [14] for the front-end and EscodeGen [28] for pretty printing.
Our toolchain can be easily modified by changing those components for others
that share the same input/output interfaces.
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Another major difference between these frameworks and our solution, is that
to implement transformations in these frameworks the developer must learn
specific languages based on the tree rewriting paradigm. This programming
paradigm is not well known by most developers. Instead, PumaScript meta-
functions use the same JavaScript language known by any JavaScript developer.
Our approach does not introduce a significantly new programming paradigm
beyond requiring familiarity with macro-expansion systems, which are already
available in a number of well known programming languages [11, 26].

Code Minifiers and Pre-Compilers: Code minifiers have been utilized by
the JavaScript community for a long time. Simple minifiers like JSMin [6] and
JSZap [4] provide mostly bandwidth optimization but not measurable perfor-
mance improvements.

Elaborated pre-compilers, like Google Closure Compiler [16], are capable of
more advanced optimizations like code inlining and removing unused variables.
However, those optimizations are provided as a mean to shorten the source code
and not as a way to improve performance.

5.2 JavaScript Performance Improvement Approaches

Runtimes and Just in Time Compilers: The greatest performance im-
provement in JavaScript language has been related with the progression from
using runtimes, like Safari SquirrelFish [10], to more advanced Just In Time
(JIT) compilers, such as Chrome V8 [17], Mozilla SpiderMonkey [9], or Microsoft
Chakra [19].

All of these JIT-based engines reuse techniques previously used in other lan-
guage runtimes, most notably the Java HotSpot compiler [25]. Although the
introduction of JIT compilers has provided an improvement of at least one or-
der of magnitude, even the more advanced JIT engines cannot optimize certain
language patterns, such as for-in vs C style for. Moreover, JIT engines are
not good candidates to incorporate optimizations related to similar APIs with
different performance, like the jQuery selectors vs native APIs cases identified
in this work.

Language Extensions: Language extensions like Mozilla asm.js [13] or In-
tel proposed SIMD [5], and parallel execution [12] extensions are capable of
providing important performance benefits for certain use cases. However, these
approaches suffer from several limitations.

First, developers must embrace the language extensions by using them in
their source code. Second, runtime providers must implement support for these
extensions in their products. These limitations generate the classic chicken-and-
egg problem: developers are not willing to invest effort in modifying their code
until most runtime providers add support for a certain language extension, while
at the same time, runtime providers are not encouraged to support the extensions
because there are not enough projects using them.
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In contrast, our approach can be used from day one by developers, not requir-
ing them to change the source code and having immediate benefits in existing
runtimes. The only additional cost for a developer to use our method is to add
our framework (that is, PumaScript module and the rewriting scripts) to the
deployment process.

6 Summary and Future Work

In this work we shown that the performance of JavaScript programs is highly
sensitive to the use of a number of source code and API patterns. Therefore,
sizable performance improvements can be achieved by replacing these patterns
by semantically equivalent faster code.

Also, we introduce a JavaScript language extension and framework called
PumaScript, which can be used to automate a number of source code rewriting
tasks. This new framework adds meta-functions to JavaScript, allowing intro-
spection and rewriting syntax trees on the fly, without requiring the program to
be restarted or a specific macro-expansion phase included in the runtime.

Developers can integrate PumaScript rewriting infrastructure and transfor-
mation scripts into their continuous integration environments to optimize the
source code before the deploying phase. Additionally, our novel approach to im-
prove performance is complementary to progress in JavaScript runtimes, high
performance language subsets, and other efforts to improve the language perfor-
mance.

Still, there is additional work to be done in order to validate how the exhibited
performance benefits in our simple experiments translate to real life code. The
first open task is to analyse how common these non-optimal patterns are in
actual, already in production JavaScript source code.

Second, we have to use real life code from third parties to prove that the
performance gain are similar to the shown by the synthetic examples we used in
this work. We plan to use open source projects from public repositories to create
a new, more comprehensive set of tests.

Moreover, as it is possible that several other non-optimal patterns exist and
can benefit from our approach, we plan to analyze the aforementioned open
source code to discover such patterns. For this task we now have the advan-
tage of having a functioning rewriting framework that will provide us with an
environment to quickly develop experiments.

Finally, we would like to explore the use of our PumaScript infrastructure
in other applications related to JavaScript meta-programming. For example, it
could be applied to source code generation, construction of static, pre-compiled
domain-specific languages, static and real-time source code analysis, application
of aspect oriented programming, source code instrumentation, and source-to-
source transformation to other scripting languages.
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