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Abstract 

 
Many modern systems must run in continually changing context. For example, a 

computer vision system to detect vandalism in train stations must function during 

the day and at night. The software components for image acquisition and people 

detection used during daytime may not be the same as those used at night. 

The system must adapt to the changing context by replacing running components 

such as image acquisition from color to infra-red. This adaptation involves context 

detection, decision on change in components, followed by seamless execution of a 

new configuration of components. All this must occur while minimizing the 

impact of dynamic change on continuity and loss in performance. We present 

Girgit, a lightweight Python-based framework for building dynamic adaptive 

systems. We evaluate it by building a dynamically adaptive vision system 

followed by performing experiments to determine its continuity and performance. 
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1 Introduction 
 

Software development is stressed to adapt to needs budding from varying operating environments. Operating 

environments can vary in terms of hardware platforms such as desktop, servers or mobile devices, software 

operating systems, and external elements such as the weather, light conditions, or any information captured by 

a network of sensors. While there is change in environment or context we see a need to maintain continuity in 

software execution. Maintaining this continuity involves dynamic adaptation of software to new 

configurations given occurrences of different contexts. For example, computer vision systems present the 

need for such dynamicity, where, for in- stance, change in light conditions solicit the need for different types 

of cameras and specific vision algorithms. What is the software framework to build such dynamically 

adaptive systems (DAS) and how can we expect it to behave? This is the question that intrigues us. 

 
Currently, there are already existing frameworks that help create dynamically adaptive systems. For instance, 

frameworks such as DiVA [Diva] provide a high-level approach using aspect-orientation and model-driven 

engineering to build DAS. Among its major drawbacks is its relatively new approach involving models and 

aspects that leads to a slow learning curve for the framework user. It is also missing a study on the impact of 
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the dynamic adaptation to continuity and performance. With lessons learned from existing frameworks (see 

Section 5 for other examples) and prior experience in design and implementation of a large vision system 

(Scene Understanding Platform, developed at PULSAR team at INRIA Sophia-Antipolis) requiring dynamic 

adaptation we present our framework, Girgit. 

 

Girgit is a Python-based lightweight framework suitable to build open and closed dynamic system [Oreizy et 

al., 1999]. It leverages the dynamic language abilities of Python such as dynamic module loading and 

introspection. It provides the basic functions of a DAS such as loading/caching components, mapping context 

events to a configuration, and chang- ing configurations at runtime. Girgit is easy to learn and use as it 

provides a small API and its based on the well-known Python programming language. In this paper, we tailor 

Girgit to perform dynamic scene understanding in video using components for vision algorithms. We perform 

rigorous empirical studies to validate Girgit for performance in terms of adaptation time and frame rate. We 

observe that mean adaptation time between configurations is 8 ms without component caching and less than 2 

µs with caching of components. This negligible adaptation time has very little effect on the resulting frame 

rate hence preserving continuity. We also perform a comparative study between pure C++ implementations of 

configurations and configurations in the Girgit framework for the same set of components. We observe that 

for processor intensive components the Girgit framework behaviour is similar than the pure C++ 

implementation while pure C++ implementations performs better for non-processor intensive components. 

 

We evaluate Girgit building a dynamic adaptive vision system and measuring the impact on video-related 

QoS features. We may summarize the contributions in the paper as follows: 

 

Contribution 1: Using Girgit we demonstrate that it is possible to easily build closed and open dynamically 

adaptive systems. 

 

Contribution 2: We also demonstrate through rigorous experimental validation that dynamic adaptation has 

negligible effect on QoS parameters such as frame rate, and adaptation time. 

 

Contribution 3: We package the framework with several examples on an open source license for external use. 

 

The paper is organized as follows. In Section 2, we present some foundational material to understand the 

problem and need of dynamic adaptation. In Section 3, we present Girgit's architecture and applications. In 

Section 4 we present the empirical evaluation of Girgit. Related work is presented in Section 5. We conclude 

in Section 6. 

 

2 Foundations 
 

The foundations to understand and evaluate Girgit has two dimensions (a) dynamically adaptive systems in 

Section 2.1 (b) QoS metrics to evaluate Girgit in Section 2.2. 

 

2.1 Dynamically Adaptive Software Systems 
 

An adaptive system is a system whose behavior can be changed during execution according to the needs. In 

[Oreizy et al., 1999] the authors define what is an adaptive system, differentiating between systems that can 

change by means of a pre-programmed set of configurations (from now on closed-adaptive systems); or by 

adding new configurations during run-time (from now on open-adaptive systems). If the system can react to 

changes in the operating environment the system is called self-adaptive. 

 

A definition of an autonomic system is "A system that can manage itself given high-level objectives from 

administrators", and can be found on [Kephart & Chess, 2003]  

 

Dynamically adaptive software systems are usually built on the monitor-analyze-plan-execute over a 

knowledge base (MAPE-K) model shown in Figure 1.  The MAPE-K loop is a refinement of the Artificial 

Intelligence community's sense-plan-act approach of the early 1980s to control autonomous mobile robots. 

The feedback loop is a control management process description for software management and evolution. The 
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MAPE-K loop presented in Figure 1 monitors and collects events, analyzes them, plans and decides the 

actions needed to achieve the adaptation or new configuration and finally executes the reconfiguration of the 

software system. 

 

 
Figure 1: Vision System MAPE-K View of a Dynamically Adaptive System 

 

2.2 QoS Metrics 
 

In this paper, we evaluate Girgit based on non-functional Quality of service metrics. We define the metrics as 

follows: 

1. Frame Rate - It is the number of frames per second (FPS) processed by a chain of vision components 

at the output.   

2. Adaptation Time - The time for the system to change from the current running configuration to the 

following taking in account the loading time of the dynamic libraries and components needed to be 

able to run. 

 

3 The Girgit Dynamic Adaptation Framework 
 

Girgit is a lightweight
1
 framework that allows dynamic reconfiguration of processing chains and the 

components inside. Girgit's core manages the relationship between components, that can take and return any 

data type. Special data types are Events, these objects are treated in a special way by the core. The way in 

which the components are wired together is described by a model specification. 

 

Globally, the core components manage the interaction between components in a dynamically adaptive 

fashion. The overall architecture for Girgit is presented in Figure 2. 

 

3.1 Architecture 
 

Girgit core components are shown in Figure 2 and described below:  

 

Model Specification: The model specification specifies a set of configurations and event/action pairs (rules) 

to change a configuration or between different configurations. A particular configuration is defined as a set of 

components, their parameters, the method that must be called, and the interconnection between these 

components. A model specification is provided using the Service Interface. 

 

Service Interface: Provides the programming API to interact with Girgit. 

 

Dynamic Processor: Executes the current configuration as described by a model specification, finding out 

during runtime the component to execute, the method to call and the set of parameters to use for the call. Also 

reconfigures either the processing chain or the components. 

 

Execution Manager: Manages the execution. Orchestrates the calls to the Event Manager and the Dynamic 

Processing Chain.  

                                                           
1
 At the submission date 929 lines of Python code according to the sloccount 

(http://www.dwheeler.com/sloccount/) tool 
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Event Manager: Manages incoming events and suggests actions such as changing components or the 

complete processing chain. The rules to map events to actions are specified in the configuration given to the 

system. 

 

Module Manager: Loads and caches instances of components. 

 

 
Figure 2: Girgit’s Architecture 

 

When Girgit is running it contains also dynamically loaded components interconnected in a graph that we call 

Processing Chain. This graph contains information about how the components are interconnected, as well as 

the temporal information of the data. This way we can connect a component A to the data generated as output 

of component B in some previous loop making feedback possible. 

 

In this paper, we evaluate Girgit by taking as a case study vision systems and we build one using the 

framework. In this case, the processing chains are defined by components encoding vision algorithms such as 

acquisition, segmentation, and blob construction. The components that can return events use information from 

vision components to return a boolean value for a given event. For instance, an intrusion detection is an event 

as shown in Figure 2. A complex event may be encoded in only one event by a component that defines 

functions over a set of events. 

 

3.2 Girgit’s Implementation 
 

Girgit is implemented in Python due to its ability to introspect and load modules at runtime. Girgit can accept 

multiple configurations. Each of those configurations defines a processing chain, the event that triggers 

(activates) the configuration, the execution order of the components in the processing chain and the 

parameters taken and returned by the components. A processing chain is defined by a directed graph 

describing the interconnection between the components, each interconnection connects one output of a single 

component with one or more inputs of other components. When multiple configurations are passed at 

initialization, the initial configuration must be passed as well and the framework will start running the 

configuration tagged as initial. 

 

We explain a regular activity cycle in Girgit using the input model specification. The main loop of Girgit is 

shown in Figure 3. The MainLoop component calls the process in the ExecutionManager component. The 



Rocha et al., A Framework for building dynamically adaptive systems, EJS 11(1) 4-15 (2012)                 8 

ExecutionManager calls the process method in the DynamicProcessor. A concept of the main tasks that take 

place in this component are steps 1 to 10 of the flow described in Figure 4. The DynamicProcessor calls all 

the components (using callComponent) in the current configuration of a processing chain. The components 

may return events to the DynamicProcessor which in turn sends the list of events to the ExecutionManager. 

The ExecutionManager sends the list of events to the EventManager by calling addEvents. The 

EventManager accumulates these events in a queue and maps each event to an action in the order they are 

popped out. The mapping of an event to an action is implemented in a Python dictionary (available from the 

model specification) where every event is identified by a name. When an event matches a rule the 

EventManager returns the pre-encoded action. This is shown also in concept in steps 11 to 15 in Figure 4. The 

processed events are saved (up to an adjustable length) in a history queue for rollback if necessary. 

 

 
Figure 3: Diagram that shows the sequence of calls for a single cycle of the main loop 

 

 
Figure 4: Conceptual Algorithm for the Girgit Loop 

 

An action resulting from an Event matching a Rule can be one of the following:  
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A1: Adaptation of an entire processing chain and its reconfiguration as shown in Figure 5 (a). 

A2: Reconfiguration of a single component as shown in Figure 5 (b). 

 

When action A1 is sent to the ExecutionManager it executes the encapsulating operation reconfigure. The 

reconfigure operation invokes setConfig in the DynamicProcessoras seen in Figure 5 (a). The operation 

setConfig first verifies that the appropriate processing chain is loaded with a new configuration. This is done 

by a call to checkConfig. If a new processing chain with a new configuration is invoked then we update a 

dictionary containing the new components of the chain and its execution order/orchestration in the 

configuration. We next verify if each component in the dictionary is already cached from a previous step. If a 

component is not loaded then we execute loadComp to load the new components using the ModuleManager. 

It also removes any unrequired components from memory. The ModuleManager then returns control to the 

DynamicProcessor which finally returns control to the ExecutionManager. 

 

When action A2 is sent to the ExecutionManager it executes reconfigureComponent in the DynamicProcessor 

from within the general operation reconfigure. The DynamicProcessor calls update on the Component to 

change its parameters and reload it while keeping the rest of the chain intact. 

 

 
(a) Reconfiguration of a processing chain 

 
(b) Component Reconfiguration 

Figure 5: Reconfiguration 

 

Girgit can load multiple processing chains in the same time, for instance, to conduct several experiments on 

the same real-time input. We use namespaces to avoid collisions between components of different processing 

chains. The namespaces (Figure 6) are created by the ModuleManager which maintains references to 

components and their respective processing chains in a dictionary. Each namespace is named after a 

processing chain. When components are shared we have a global scope namespace that is accessible to all 

configurations. 

 

 
Figure 6: Representation of namespaces, showing an active processing chain (SimpleMovementDetection) and 

a passive processing chain(Facedetection). 
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In Figure 2 we present the snapshot of a reconfiguration where the Face Detection component replaces the 

Intrusion Detection component due to an Intrusion Detected event. We first update the configuration 

dictionary and the execution order list with all the new elements and erase the components that should not 

exist anymore. We then check the configuration and load uniquely the libraries and components that are not 

already cached. In this case, we remove movement detection and replace it with blob construction, face 

detection, and image window for visual inspection. 

 

3.3 Example Execution in Girgit 
 

We demonstrate dynamic adaptation in Girgit using  Figure 7. The vision system starts in intrusion detection 

mode which is the initial and current configuration. During the loop execution, When an intrusion is detected 

as shown in Figure 7a, an event is generated as shown in Figure 2. The Execution Manager gets the event and 

asks the event manager what to do, and this responds with an action corresponding to a change in 

configuration that contains a new component for face detection. The Execution Manager instructs the 

Dynamic Processor to change the configuration for the new one, this last component asks the Module 

Manager to load the face detection component from hard-disk or from memory cache. Finally, the processing 

loop continue and the result with the face detection component ensues as shown in Figure 7b. 

 

 
(a) Intrusion Detection 

 
(b) Face Detection 

Figure 7: Dynamic Reconfiguration from Intrusion to Face Detection. Figure 7a is before and Figure 7b is 

after the reconfiguration event. 

 

4 Empirical Evaluation 
 

We empirically evaluate Girgit to answer the following questions: 

Q1 How long does Girgit take to reconfigure or adapt?  

Q2 How does adaptation in Girgit affect continuity of operation?  

Q3 How does the execution with Girgit compare to a pure C++ configuration implementation?  

 

4.1 Experimental Setup 
 

We evaluate Girgit using a total of eight different configurations. Each configuration contains a different set 

of components and/or their parameter settings. Most components encapsulate libraries in OpenCV [Opencv] 

such as Pyramid segmentation and HAAR object detection. The primary goal was to build dynamic adaptive 

vision test systems that switch between configurations according to arriving events. We present the number 

and name of the different configurations on the left side in Figure 8. The components used in the 

configurations are shown on the right of Figure 8. We also provide the order in the processing chain for these 

components in the configuration. For instance, OpenCV AVI reader is first in the order in all configurations. 

The symbol × indicates absence of the component in the configuration. 
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Configurations 
ID Name 

C1 SMOOTH_SEGMENTATION 

C2 FGD_SEGMENTATION 

C3 PYRAMID_SEGMENTATION 

C4 INTRUSION_DETECTION 

C5 FACE_DETECTION_PYR 

C6 FACE_DETECTION_FGD 

C7 FACE_DETECTION 

C8 VIDEO_PLAYER 
 

Configurations Details 
Component C1 C2 C3 C4 C5 C6 C7 C8 

OpenCV AVI Reader 1 1 1 1 1 1 1 1 

Image Smoothing 2 × × 2 × × × × 

FGD Background Subtraction × 2 × × × 2 × × 

Pyramid Segmentation × × 3 × 3 × × × 

HA AR Detection × × × 3 3 3 2 × 

Image Window 3 3 4 4 4 4 3 2 

Profiler × × × × × × 4 3 
 

Figure 8: Experimental Configurations 

 

Using the first six configurations we perform the following experiments to answer questions Q1 and Q2. 

 

Experiment E1: For a single configuration (configuration C1) we execute 15 reconfigurations of the same 

configuration (a) With caching and (b) Without caching. The constant factor here is the configuration that 

remains fixed. The goal of this experiment is to study stability in adaptation times and frame rate due to 

dynamic reconfiguration.  

 

Experiment E2: In this experiment, we execute all pairs of configuration transitions possible using the first 

six configurations (a) With caching and (b) Without caching. The goal of this experiment was to introduce 

variation in configurations and check if this affected adaptation times and frame rate. How stable is the 

adaptation time when configurations change? The configurations were changed every 5 seconds. 

 

For both experiments we measure the frame rate and adaptation times. We execute the same experiment 100 

times to validate the stability of our results. 

 

Experiment E3: This experiment aims to evaluate the cumulative impact of the dynamic resolution of the 

python wrappers and dynamic resolution of calls. We compare the same behavior written in a pure C++ 

implementation and using Girgit. Two configurations where used, a simple one that only reads and shows the 

image C7 (Figure 8) and a more complex one that uses the HAAR algorithm C8. 

 

For this experiment we measure only FPS as it is the most meaningful QoS value for video processing. The 

looping was left free to achieve the maximum FPS rate possible. A sequence of the first 1000 frames of the 

same video where used for 4 runs. The FPS was measured every 10 frames. 

 

For all the experiments the input video was a long sequence from an office space where there are multiple 

people entering and leaving the scene. The execution took place in the following platform: Linux Fedora 14 

x86\_64,  Intel(R) Core(TM) i7 CPU Q720 @ 1.60GHz,  Memory: 8GB. 

 

4.2 Results and Discussion 
 

The results of experiments E1 and E2 are summarized in this section. In Figure 9, we show the statistical 

results obtained during the experiment E1. We observe that there is a considerable difference between the 

adaptation times with and without caching system activated, having the cached system a much better absolute 

performance. Considering that the minimum values in frame rate obtained are instantaneous values for the 

reconfiguration instant, that vision systems usually vary in performance when the video situation change and 

that the mean frame rate is almost equal to the one with caching system we can conclude that the system 

without cache actually do not have a meaningful impact on the vision system overall performance. This result 

addresses question Q1 and demonstrate that Girgit indeed has a low adaptation time. 

 

Using the dynamic system with caching system we see no loss in frame rate. While without caching there is a 

small loss in frame rate that is not significative for this type of application. These results address question Q2. 

The continuity in frame rate is largely preserved in Girgit. 

          

 



Rocha et al., A Framework for building dynamically adaptive systems, EJS 11(1) 4-15 (2012)                 12 

Stat Cache ON unit Cache OFF unit 

Adaptation Mean 1.82 µs 8.00 ms 

Adaptation Max 16.5 µs 15.6 ms 

Adaptation Std Dev 8.16 µs 1.18 ms 

Frame rate Mean 23.98 fps 23.74 fps 

Frame rate Max 25.72 fps 31.35 fps 

Frame rate Min 23.90 fps 16.25 fps 

Frame rate Std Dev 0.38 fps 0.80 fps 
 

Figure 9: Adaptation times and frame rate for experiment E1 

 

In experiment E2, we vary the configurations to see the effect on adaptation time and frame rate. As seen in 

Figure 10a, the caching has high adaptation times for the first few configurations as components are loaded 

and cached. However, after the components are cached the adaptation time drops drastically (peak not seen in 

the plot is 0.16 ms and less than 2 µs mean). However, as expected, when the caching system is not used 

(Figure 10b), the adaptation times are higher peaking at 15.6 ms (not showed in the boxplot) and with a mean 

of 8ms. This result sheds light on question Q1. It demonstrates that when configurations change caching 

allows reduction in adaptation times later in the runtime life of Girgit. With respect to Q2 there is also more 

stability in the adaptation times. The frame rate with caching is also stable (not shown in the paper due to 

space limitations) when multiple configurations change. 

 

 
(a) Caching ON 

 
(b) Caching OFF 

Figure 10: Adaptation times for the 30 possible configuration transitions (transition every 5 seconds) all pairs 

of the 6 configurations with/without caching. X-axis represent the transitions, Y-axis represent adaptation 

time in seconds 

 

In experiment E3, we compare the performance, in terms of frame rate (FPS) for 2 different configurations: 

C7 and C8. Each configuration was programmed: (a) entirely in C++ in a dedicated non modular program for 

achieving the maximum performance; (b) using components with a Girgit configuration file. It was not a 

surprise that the FPS is higher in C++ than with Girgit
2
 for the example of a video player 11a. But, when the 

algorithms in the modules are more processor intensive (Figure 11b), we can observe that Girgit’s throughput 

shows no significative difference with the C++ execution. 

 

We conclude dynamic adaptation, and in particular, our platform, is not only suitable for applications where 

dynamic adaptation is needed and where the algorithms to execute are processor intensive but has many 

advantages respect a static program. 

 

                                                           
2
 Girgit has to resolve the execution modules, methods, calls and order in runtime, and is implemented in 

Python, an interpreted language running on a Virtual Machine 
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(a) Video Player 

 
(b) Face Detection 

Figure 11: Frame rate comparison between a pure C++ program and the same behaviour implemented in 

Girgit 

 

4.3 Configurations and Debugging 
 

As Girgit is dedicated to the task of dynamic loading and modifying component configuration, and as we 

believe in separating the dynamic behaviour from the decisions about the configuration of the system, Girgit 

does neither provides nor aims to provide for configuration checking. It does not check for errors or 

incompatibilities in the configurations given to it. Girgit will only execute them.  

 

The complexity of the configuration grows with the number of components available as well as the types and 

number of inputs and outputs. Part of this complexity is because different components have different number 

and type of inputs and outputs. Giving to a component an input that it does not know how to deal with, an 

insufficient or exceeding number of inputs, are examples of composition errors. This leads to an enormous 

complexity in the case where the number of components is big and the errors are in the composition of the 

processing chain. An approach with specialized tools in Model Checking techniques or Model Driven 

Engineering (MDE) is the path to take. We are working in building a specialized communication layer with 

the FAMILIAR [Familiar] language, to generate valid configurations. The language allows the manipulation 

of feature models, a popular formalism for managing variability in software product lines.  

 

Due to the dynamic nature Girgit testing is not an easy task. To show that the framework is behaving correctly 

Girgit's core is tested with the unit testing framework PyUnit [Pyunit]. A set of testing plugins, from 

completely empty to fully functional well tested plugins where prepared for the testing procedure. Test cases 

include configurations with errors. 

 

If we suspect a component is misbehaving, we are able to change the system configuration iteratively turning 

on and off the components. After isolated the plugin, artificial or recorded inputs and outputs can be used 

instead of the rest of the configuration. This technique also allows us to test different algorithms performance 

and compare them against each other or a ground-truth database. 

 

4.4 Threats to Validity 
 

The experiments performed on Girgit are within certain bounds. We execute experiments for eight vision 

components. Although our experiments represent a realistic vision system we may imagine a case study with 

100s of components. Therefore, the scalability of Girgit to hundreds of components is an issue that needs 

investigation. Using components with badly managed memory can result in errors in experimental 

observations such as memory usage. In our case study, we thoroughly verify the 8 components for non-

existence of memory leaks. We demonstrate continuity of Girgit in terms of frame rate and adaptation times 

for a given set of configurations. However, continuity can have different semantics. For instance, continuity 

of tracking an object when context changes.   We need to validate Girgit for various application scenarios and 

case studies. Our study shows that this dynamic adaptive framework is not currently suitable for non 
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processor intensive processing chains that need a high loop throughput. We are taking action to improve the 

behaviour under these conditions. Handling programming errors in modules in this system has not been 

deeply studied yet. For the moment, components and configurations have to be tested prior usage with the 

framework in a production environment. We are currently working on an MDE (Model Driven Engineering) 

approach for validating configurations. An approach based on Acceptability-Oriented Computing [Rinard, 

2003] should be studied for it can be of great use as components can be changed if one is detected to 

misbehave. In the section 4.3 we give an overview of the problem of debugging and configurations. 

 

5 Related Work 
 

Building dynamically adaptive software is a hot area of work in software engineering. This interest in 

dynamic adaptation comes with maturity in component-based/service-oriented software, dynamic and 

introspective languages such as Python, and distributed publish-subscribe systems [Eugster, Felber, 

Guerraoui, & Kermarrec, 2003]. Dynamic adaptation between a number of components with different 

parameters presents a large space of variability that is best managed using a high-level model [Diva] [Zhang 

& Cheng, 2006]. Models@runtime [Morin, Barais, Jezequel, Fleurey, &Solberg, 2009] is the current trend to 

manage/reason about dynamically adaptive software. Examples of dynamically adaptive software frameworks 

include MOCAS [Hameurlain & Barbier, 2009], and RAINBOW [Garlan, Cheng, Huang, Schmerl, & 

Steenkiste, 2004]. Girgit is a similar framework built on Python. We maintain a specification of the adaptive 

system configuration which is a model@runtime. Girgit introspectively adapts to the changes made to the 

model. We apply Girgit's framework to the large case study of a vision system. 

 

We evaluate Girgit for QoS using rigorous empirical studies. Empirical studies in dynamically adaptive 

systems validate its functional and non-functional behavior by exploring the domain of its variability 

[Kattepur, Sen, Baudry, Benveniste, & Jard, 2010] [Perrouin, Sen, Klein, Baudry, & Le Traon, 2010]. In our 

experiments, we cover all possible component configurations of a vision system built within Girgit and 

compare behaviour of Girgit to a pure C++ application. 

 

6 Conclusion 
 

We presented Girgit, a framework for building dynamic adaptive systems that allows creating open and 

closed dynamic systems as well as autonomic systems. In first instance we show the architecture used for the 

framework. Later we used Girgit to build a dynamic adaptive vision system case study that clearly separates 

the dynamic adaptation details from the actual vision components. We demonstrate that there is negligible 

effect on performance due to dynamic adaptation. This is especially true when caching is used and for 

applications where the modules are processor intensive. One of the main problems with dynamic adaptation in 

vision is the resilience of people in using them with performance being a big question mark. With this article 

we hope clarifying the scope and use of dynamic adaptive systems and helping to eliminate the apprehension 

in the mind of a vision expert about the performance related feasibility of building dynamically adaptive 

vision systems. 

 

The framework facilitates creating and prototyping dynamically adaptive systems and allows open and closed 

dynamic adaptive systems. The case of open adaptive is being used for interactively modify the systems in 

study. We are currently using the framework in the STARS (previously PULSAR) team at INRIA Sophia 

Antipolis for research and setup tasks. The framework is provided under MIT license and the documentation 

and development can be found at http://www-sop.inria.fr/teams/pulsar/Girgit/. 
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