

SADIO Electronic Journal of Informatics and

Operations Research

http://www.dc.uba.ar/sadio/ejs

vol. 11, no. 1, pp. 31-48 (2012)

Avoiding WSDL Bad Practices in Code-First Web Services
♦

Cristian Mateos
1,2,3

 Marco Crasso
1,2,3

 Alejandro Zunino
1,2,3

 José Luis Ordiales

Coscia
2

1
 ISISTAN Research Institute.

2
Universidad Nacional del Centro de la Provincia de Buenos Aires (UNICEN)

Campus Universitario, Tandil (B7001BBO)

Buenos Aires, Argentina
3CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)

e-mail: cmateos@conicet.gov.ar

Tel. +54-2293-440363, ext. 35

Abstract

Service-Oriented Computing allows software developers to structure applications as a set

of standalone and reusable components called services. The common technological

choice for materializing these services is Web Services, whose exposed functionality is

described by using the Web Services Description Language (WSDL). Methodologically,

Web Services are often built by first implementing their behavior and then generating the

corresponding WSDL document via automatic tools. Good WSDL designs are crucial to

derive reusable Web Services. We found that there is a high correlation between well-

known Object-Oriented metrics taken in the code implementing services and the

occurrences of bad design practices in their WSDL documents. This paper shows that

some refactorings performed early when developing Web Services can greatly improve

the quality of generated WSDL documents.

Keywords: Service-Oriented Computing; Web Services; Code-First;

Object-Oriented Metrics; Wsdl Anti-Patterns; Early Detection.

1 Introduction

The success encountered by the Internet encourages practitioners, companies and governments to create software

that consumes information and services that third-parties have publicly offered in the Web. Service-Oriented

Computing (SOC) is a relatively new computing paradigm that supports the development of distributed applications

in heterogeneous environments (Erickson & Siau, 2008) and has radically changed the way applications are

architected, designed and implemented (Mateos, Crasso, Zunino, & Campo, 2010). The SOC paradigm introduces a

new kind of building block called service, which represents functionality that is delivered by external providers (e.g.

♦ This article is an extended version of the paper presented in the 11th Argentine Symposium on Software Engineering

(ASSE2011) - 39th JAIIO

Mateos et al., Avoiding WSDL Bad Practices in Code

a business or an organization), made available in registries, and remotely consumed using standard protocols. Far

from being a buzzword, SOC has been exploited by major players in the software industry including Microsoft,

Oracle, Google and Amazon.

The term “Web Services” refers to a stack of technologies for implementing the SOC paradigm. Web Services are

services with well-defined interfaces that can be published, locate

protocols (Erickson & Siau, 2008)

technologies. Regarding Web Services

Language (WSDL), an XML-based language designed for specifying services’ functionality as a set of abstract

operations with inputs and outputs, and to associate binding information so

operations. The interactions between service producers, registry and consumers are shown in Figure 1

Since back in mid-2002, to make their WSDL documents publicly available providers employed a specification of

service registries called Universal Description, Discovery and Integration (UDDI), whose central purpose is to

maintain meta-data about Web Servic

Interface (API) for discovering services, which allows consumers to discover services that match their functional

needs. Concretely, the inquiry API receives a keyword

documents, which the consumer who performs the discovery process must analyze. As a complement to UDDI,

several syntactic Web Service registries such as Woogle

WSQBE (Crasso, Zunino, & Campo, 2008)

text processing or machine learning techniques, such as XML supervised classification

2008) or clustering (Rusu, Rahayu, & Taniar, 2008)

based discovery process (Crasso, Zunino, & Campo, 2011)

Certainly, service interface design plays one of the most i

understand, discover and reuse services

appropriately specified by providers, service interface meta

of a service, thus hindering its adoption. Indeed, it has been shown that service consumers, when faced with two or

more WSDL documents that are similar from a functional perspective, they tend to choose the most concisely

described one (Crasso, Rodriguez, Zunino, & Campo, 2010a)

comments of its operations can make the associated Web Service difficult to be discovered

Zunino, & Campo, 2010a). Particularly, discovery precision of syntactic registries is harmed when deali

poorly described WSDL documents

The work of (Crasso, Rodriguez, Zunino, & Campo, 2010a)

practices, or anti-patterns for short, found in public WSDL documents, covering the problems mentioned in the

previous paragraph. In (Crasso, Rodriguez, Zunino, & Campo, 2010c)

service providers should take into account when specifying service interfaces in order to obtain clear, discoverable

1
 Seekda!, http://webservices.seekda.com

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-

a business or an organization), made available in registries, and remotely consumed using standard protocols. Far

has been exploited by major players in the software industry including Microsoft,

The term “Web Services” refers to a stack of technologies for implementing the SOC paradigm. Web Services are

defined interfaces that can be published, located and consumed by means of ubiquitous Web

(Erickson & Siau, 2008) such as SOAP (Consortium, 2007), i.e. this stack consists of Web

technologies. Regarding Web Services interfaces, a provider describes them using the Web Services Description

based language designed for specifying services’ functionality as a set of abstract

operations with inputs and outputs, and to associate binding information so that consumers can invoke the offered

operations. The interactions between service producers, registry and consumers are shown in Figure 1

Figure 1 The Web Services model

2002, to make their WSDL documents publicly available providers employed a specification of

service registries called Universal Description, Discovery and Integration (UDDI), whose central purpose is to

data about Web Services. Apart from this, UDDI defines an inquiry Application Programming

Interface (API) for discovering services, which allows consumers to discover services that match their functional

needs. Concretely, the inquiry API receives a keyword-based query and in turn returns a list of candidate WSDL

documents, which the consumer who performs the discovery process must analyze. As a complement to UDDI,

several syntactic Web Service registries such as Woogle (Dong, Halevy, Madhavan, Neme

(Crasso, Zunino, & Campo, 2008) and seekda!1 have emerged. These registries basically work by applying

text processing or machine learning techniques, such as XML supervised classification

Rusu, Rahayu, & Taniar, 2008), to improve the retrieval effectiveness of the same keyword

(Crasso, Zunino, & Campo, 2011).

Certainly, service interface design plays one of the most important roles in enabling third

understand, discover and reuse services (Crasso, Rodriguez, Zunino, & Campo, 2010d)

appropriately specified by providers, service interface meta-data can be counterproductive and obscure the purpose

of a service, thus hindering its adoption. Indeed, it has been shown that service consumers, when faced with two or

e WSDL documents that are similar from a functional perspective, they tend to choose the most concisely

(Crasso, Rodriguez, Zunino, & Campo, 2010a). Moreover, a WSDL description without

of its operations can make the associated Web Service difficult to be discovered

. Particularly, discovery precision of syntactic registries is harmed when deali

poorly described WSDL documents (Crasso, Rodriguez, Zunino, & Campo, 2010a).

(Crasso, Rodriguez, Zunino, & Campo, 2010a) integrally studies common discoverability bad

for short, found in public WSDL documents, covering the problems mentioned in the

(Crasso, Rodriguez, Zunino, & Campo, 2010c), the same authors provide a set of guidelines

service providers should take into account when specifying service interfaces in order to obtain clear, discoverable

http://webservices.seekda.com

-48 (2012) 32

a business or an organization), made available in registries, and remotely consumed using standard protocols. Far

has been exploited by major players in the software industry including Microsoft,

The term “Web Services” refers to a stack of technologies for implementing the SOC paradigm. Web Services are

d and consumed by means of ubiquitous Web

, i.e. this stack consists of Web-based

interfaces, a provider describes them using the Web Services Description

based language designed for specifying services’ functionality as a set of abstract

that consumers can invoke the offered

operations. The interactions between service producers, registry and consumers are shown in Figure 1.

2002, to make their WSDL documents publicly available providers employed a specification of

service registries called Universal Description, Discovery and Integration (UDDI), whose central purpose is to

es. Apart from this, UDDI defines an inquiry Application Programming

Interface (API) for discovering services, which allows consumers to discover services that match their functional

turn returns a list of candidate WSDL

documents, which the consumer who performs the discovery process must analyze. As a complement to UDDI,

(Dong, Halevy, Madhavan, Nemes, & Zhang, 2004),

These registries basically work by applying

text processing or machine learning techniques, such as XML supervised classification (Crasso, Zunino, & Campo,

, to improve the retrieval effectiveness of the same keyword-

mportant roles in enabling third-party consumers to

(Crasso, Rodriguez, Zunino, & Campo, 2010d). On one hand, unless

data can be counterproductive and obscure the purpose

of a service, thus hindering its adoption. Indeed, it has been shown that service consumers, when faced with two or

e WSDL documents that are similar from a functional perspective, they tend to choose the most concisely

. Moreover, a WSDL description without many

of its operations can make the associated Web Service difficult to be discovered (Crasso, Rodriguez,

. Particularly, discovery precision of syntactic registries is harmed when dealing with

common discoverability bad

for short, found in public WSDL documents, covering the problems mentioned in the

, the same authors provide a set of guidelines

service providers should take into account when specifying service interfaces in order to obtain clear, discoverable

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 33

services. However, a requirement inherent to applying these guidelines is that services are mostly built in a

contract-first manner, a method that encourages designers to first derive the WSDL document of a service and then

supply an implementation for it. Then, (Crasso, Rodriguez, Zunino, & Campo, 2010c) help providers in detecting

and removing anti-patterns. However, the most used approach to build Web Services by the industry is code-first,

which means that one first implements a service and then generates the corresponding WSDL document by

automatically extracting and deriving the interface from the implemented code. Then, WSDL documents are not

directly created by humans but are instead automatically derived via language-dependent tools. Consequently, anti-

patterns may manifest themselves in the resulting WSDL documents when bad implementation practices are

followed (Crasso, Rodriguez, Zunino, & Campo, 2010d) or deficient WSDL generation tools are used.

In this paper, we study the feasibility of avoiding these anti-patterns by using Object-Oriented (OO) metrics from

the code implementing services. Basically, the idea is employing these metrics as “indicators” that warn the service

developer about the potential occurrence of anti-patterns early during the Web Service implementation phase. In

this way, this approach would benefit most software practitioners in the industry, which usually rely on code-first

service construction. Specifically, through some statistical analysis, we found that a small sub-set of the OO metrics

studied is highly correlated to the studied anti-patterns. Based on this, we analyze several simple code refactorings

that developers can use to avoid anti-patterns in their service interfaces.

The rest of the paper is structured as follows. Section 2 gives some background on the WSDL anti-patterns. Then,

Section 3 presents hypotheses for correlating these anti-patterns and metrics taken at the service implementation

phase. Later, Section 4 presents experiments that evidence such correlations, the derived source code refactorings,

and the positive effects of these latter in the WSDL documents. Section 5 surveys relevant related works. Section 6

concludes the paper.

2 Background

WSDL allows providers to describe two parts of a service, namely what it does (its functionality) and how to invoke

it. The former part reveals the service interface that is offered to potential consumers. The latter part specifies

technological aspects, such as transport protocols and network addresses. Consumers use the functional descriptions

to match third-party services against their needs, and the technological details to invoke the selected service. With

WSDL, service functionality is described as a port-type }..{ 000)R,(IO,),R,(IO=W NNN , which arranges

different operations iO that exchange input and return messages, iI and iR respectively. Main WSDL elements,

such as port-types, operations and messages, must be labeled with unique names. Optionally, these WSDL elements

might contain documentation in the form of comments.

Messages consist of parts that transport data between consumers and providers of services, and vice-versa.

Exchanged data is represented using XML according to specific data-type definitions in XML Schema Definition

(XSD), a language to structure XML content. XSD offers constructors for defining simple types (e.g. integer and

string), restrictions and both encapsulation and extension mechanisms to define complex elements. XSD code might

be included in a WSDL document using the types element, but alternatively it might be put into a separate file and

imported from the WSDL document or even other WSDL documents afterward.

Commonly, a WSDL document is the only publicly available meta-data that describes a Web Service. Thus, many

approaches to Web Service discovery are based on service descriptions specified in WSDL (Crasso, Zunino, &

Campo, 2011). Strongly inspired by classic Information Retrieval techniques, such as word sense disambiguation,

stop-words removal, and stemming, these approaches extract keywords from WSDL documents, and then model

extracted information on inverted indexes or vector spaces (Crasso, Zunino, & Campo, 2011). Then, generated

models are employed for retrieving relevant service descriptions, i.e. WSDL documents, for a given keyword-based

query. Different experiments empirically have confirmed that these approaches to discover services are very

interesting, however as they rely on the descriptiveness of service specifications their retrieval effectiveness may be

deteriorated by poorly written WSDL documents.

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 34

The work published in (Crasso, Rodriguez, Zunino, & Campo, 2010a) introduces the WSDL discoverability anti-

patterns (see Table 1 for a brief description), measures their impact on both service retrieval effectiveness and

human users’ experience, and proposes refactoring actions to remedy the identified problems. The authors classify

the identified bad practices as problems concerning how a service interface has been designed, problems on the

comments and identifiers used to describe a service, and problems on how the data exchanged by a service are

modeled. Each bad practice description is accompanied by a reproducible solution in (Crasso, Rodriguez, Zunino, &

Campo, 2010c), thus they are called WSDL discoverability anti-patterns, or anti-patterns for short. A requirement

inherent to apply these solutions is that services are built in a contract-first manner, a method that encourages

designers to first derive the WSDL interface of a service and then supply an implementation for it using any

programming language. Although with this method providers achieve the real importance of WSDL documents as a

communication artifact, contract-first is not very popular among developers because the effort it requires is rather

bigger than the required by its counterpart, namely code-first. Code-first means that one first implements a service

and then generates the corresponding service contract by automatically extracting and deriving the interface from

the implemented code. To understand how this works, let us take the case of Java2WSDL, a software tool that given

a Java class produces a WSDL document with operations standing for all public methods declared in the class.

Moreover, Java2WSDL associates an XML representation with each input/output method parameter -primitive

types or objects- in XSD. One consequence of this WSDL generation method is that any change introduced in

service implementations requires the re-generation of WSDL documents, which in turn may affect service

consumers as service interfaces potentially change. In the end, developers focus on developing and maintaining

service implementations, while delegating WSDL documents generation to code-first tools during service

deployment.

Anti-pattern Occurs when

Ambiguous names (1AP) Ambiguous or meaningless names are used for the

main elements of a WSDL document.

Empty messages (2AP) Empty messages are used in operations that neither

produce outputs nor receive inputs.

Enclosed data model (3AP) The data-type definitions used for exchanging

information are placed in WSDL documents rather

than in separate XSD documents.

Low cohesive operations in the same port-type (4AP) Port-types have weak semantic cohesion.

Redundant data models (5AP) A WSDL document relies on many data-types for

representing the same domain objects.

Whatever types (6AP) A special data-type is used for representing any

object of the problem domain.

Table 1: The core sub-set of the Web Service discoverability anti-patterns

The main hypothesis of this paper is that it is possible to detect WSDL anti-patterns early in the implementation

phase by basing on classic API metrics gathered from service implementation and an understanding about how

WSDL generation tools work. As explained in (Crasso, Rodriguez, Zunino, & Campo, 2010d), the anti-patterns are

strongly associated with API design qualitative attributes, in the sense that some anti-patterns spring when well-

established API design golden rules are broken. For instance, the 4AP anti-pattern is to place semantically

unrelated operations in the same port-type, although modules with high cohesion tend to be preferable, which is a

well-known lesson learned from structured design. The goal of this paper is to detect WSDL discoverability anti-

patterns previous to generate WSDL documents, but by basing on service implementations since the code-first

method is meant to be supported.

3 Hypothesis statements for early WSDL anti-patterns detection

The proposed approach aims at allowing providers to prevent their WSDL documents from incurring in the WSDL

anti-patterns presented in (Crasso, Rodriguez, Zunino, & Campo, 2010a) when following the code-first method for

Mateos et al., Avoiding WSDL Bad Practices in Code

building services. To do this, the approach is supported by two facts. First, the approach assumes that a typical

code-first tool performs a mapping

Mapping T from { 0 ,M(I=C

..{ 000 R,(IO,),R,(IO=W NNN

containing a port-type for the service implementation class, having as many

defined in the class. Moreover, each

message R, while each message conveys an XSD type that stands for the parameters of the corresponding class

method. Code-first tools like Java2WSDL, WSDL.exe, and gSOAP

mapping T for generating WSDL documents from Java, C#, and C++, respectively, though each tool implements

in a particular manner mostly because of the different characteristics of the involved programming languages.

Figures 2 and 3 show the generation of a WSDL document for two similar Web Services

WSDL.exe, respectively. It can be noted that the generation process for both tools is the

maps public method on the service code to an

these, in turn, are associated with an XSD type containing the parameters of that operation. There are, however,

some minor differences between the two generated WSDL documents. For example, Java2WSDL generates only

one port-type with all the operations of the Web Service, whereas WSDL.exe generates three port

each transport protocol). As we mentioned before, these

uses when applying the mapping to the service code.

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-

building services. To do this, the approach is supported by two facts. First, the approach assumes that a typical

first tool performs a mapping T, formally WCT →: .

}..0)R,(IM,),R NNN or the front–end class implementin

}) or the WSDL document describing the service, generates a WSDL document

for the service implementation class, having as many operations O

defined in the class. Moreover, each operation of W will be associated with one input message I

conveys an XSD type that stands for the parameters of the corresponding class

e Java2WSDL, WSDL.exe, and gSOAP (Van Engelen & Gallivan, 2002)

for generating WSDL documents from Java, C#, and C++, respectively, though each tool implements

in a particular manner mostly because of the different characteristics of the involved programming languages.

show the generation of a WSDL document for two similar Web Services

WSDL.exe, respectively. It can be noted that the generation process for both tools is the

maps public method on the service code to an operation containing two messages in the WSDL document and

these, in turn, are associated with an XSD type containing the parameters of that operation. There are, however,

fferences between the two generated WSDL documents. For example, Java2WSDL generates only

type with all the operations of the Web Service, whereas WSDL.exe generates three port

each transport protocol). As we mentioned before, these differences are a result of the implementation each tool

uses when applying the mapping to the service code.

Figure 2 WSDL generation in Java

-48 (2012) 35

building services. To do this, the approach is supported by two facts. First, the approach assumes that a typical

end class implementing a service to

or the WSDL document describing the service, generates a WSDL document

operations O as public methods M are

message I and another return

conveys an XSD type that stands for the parameters of the corresponding class

(Van Engelen & Gallivan, 2002) are based on a

for generating WSDL documents from Java, C#, and C++, respectively, though each tool implements T

in a particular manner mostly because of the different characteristics of the involved programming languages.

show the generation of a WSDL document for two similar Web Services, using Java2WSDL and

WSDL.exe, respectively. It can be noted that the generation process for both tools is the same, i.e. the mapping T

in the WSDL document and

these, in turn, are associated with an XSD type containing the parameters of that operation. There are, however,

fferences between the two generated WSDL documents. For example, Java2WSDL generates only

type with all the operations of the Web Service, whereas WSDL.exe generates three port-types (one for

differences are a result of the implementation each tool

Mateos et al., Avoiding WSDL Bad Practices in Code

Furthermore, the second fact that underpins our approach is that WSDL discoverability anti

associated with API design attributes

studied by the software engineering community and as a result suites of related OO class

the Chindamber and Kemerer’s metric catalog

providers about how a service implementation conforms to specific design attributes. For instance, the LCOM

(Lack of Cohesion Methods) metric provides a mean to measure how well the methods of a class are semantically

related to each other, while the “Low cohesive operations in the same port

operations cohesion. Here, the design attribute under study is cohesion, the metric is LCOM, and

operations in the same port-type” is the po

By basing on the previous two facts, the idea behind the proposed approach is that by employing well

software engineering metrics on a service code

document W will be like in terms of anti

such metric/anti-pattern relationships exist, then it would be possible to determine a range of metric values for

that T generates W without anti-patterns in the best case.

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-

Figure 3 WSDL generation in C#

Furthermore, the second fact that underpins our approach is that WSDL discoverability anti

associated with API design attributes (Crasso, Rodriguez, Zunino, & Campo, 2010d)

studied by the software engineering community and as a result suites of related OO class

the Chindamber and Kemerer’s metric catalog (Chidamber & Kemerer, 1994). Consequently, these metrics tell

providers about how a service implementation conforms to specific design attributes. For instance, the LCOM

(Lack of Cohesion Methods) metric provides a mean to measure how well the methods of a class are semantically

“Low cohesive operations in the same port-type” anti

cohesion. Here, the design attribute under study is cohesion, the metric is LCOM, and

is the potentially associated anti-pattern.

By basing on the previous two facts, the idea behind the proposed approach is that by employing well

software engineering metrics on a service code C, a provider might have an estimation of how the resulting WSDL

will be like in terms of anti-pattern occurrences, since a known mapping T

pattern relationships exist, then it would be possible to determine a range of metric values for

patterns in the best case.

-48 (2012) 36

Furthermore, the second fact that underpins our approach is that WSDL discoverability anti-patterns are strongly

, which have been soundly

studied by the software engineering community and as a result suites of related OO class-level metrics exist, such as

onsequently, these metrics tell

providers about how a service implementation conforms to specific design attributes. For instance, the LCOM

(Lack of Cohesion Methods) metric provides a mean to measure how well the methods of a class are semantically

anti-pattern measures WSDL

cohesion. Here, the design attribute under study is cohesion, the metric is LCOM, and “Low cohesive

By basing on the previous two facts, the idea behind the proposed approach is that by employing well-known

, a provider might have an estimation of how the resulting WSDL

T relates C with W. If indeed

pattern relationships exist, then it would be possible to determine a range of metric values for C so

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 37

We established several hypotheses by using an exploratory approach to test the statistical correlation among OO

metrics and the anti-patterns. For brevity and clarity, next we show the initial hypotheses that after the statistical

analysis proved to hold.

Hypothesis 1 (31 : APCBOH →). The higher the number of classes directly related to the class implementing a

service (CBO metric), the more frequent the Enclosed data model anti-pattern occurrences.

Basically, CBO (Coupling Between Objects) (Chidamber & Kemerer, 1994) counts how many methods or instance

variables defined by other classes are accessed by a given class. Code-first tools based on T include in resulting

WSDL documents as many XSD definitions as objects are exchanged by service classes methods. We believe that

increasing the number of external objects that are accessed by service classes may increase the likelihood of data-

types definitions within WSDL documents.

Hypothesis 2 (42 : APWMCH →). The higher the number of public methods belonging to the class

implementing a service (WMC metric), the more frequent the Low cohesive operations in the same port-type

anti-pattern occurrences.

The WMC (Weighted Methods Per Class) (Chidamber & Kemerer, 1994) metric counts the methods of a class. We

believe that a greater number of methods increases the probability that any pair of them are unrelated, i.e. having

weak cohesion. Since T-based code-first tools map each method to an operation, a higher WMC may increase the

possibility that resulting WSDL documents have low cohesive operations.

Hypothesis 3 (53 : APWMCH →). The higher the number of public methods belonging to the class

implementing a service (WMC metric), the more frequent the Redundant data models anti-pattern

occurrences.

The number of message elements defined within a WSDL document built under T-based code-first tools, is equal to

the number of operation elements multiplied by two. As each message may be associated with a data-type, we

believe that the likelihood of redundant data-type definitions increases with the number of public methods, since

this in turn increase the number of operation elements.

Hypothesis 4 (14 : APWMCH →). The higher the number of public methods belonging to the class

implementing a service (WMC metric), the more frequent the Ambiguous names anti-pattern occurrences.

Similarly to
H 3 , we believe that an increment in the number of methods may lift the number of non-

representative names within a WSDL document, since for each method a T-based code-first tool automatically

generates in principle five names (one for the operation, two for input/output messages, and two for data-types).

Hypothesis 5 (65 : APATCH →). The higher the number of method parameters belonging to the class

implementing a service that are declared as non-concrete data-types (ATC metric), the more frequent the

Whatever types anti-pattern occurrences.

ATC (Abstract Type Count) is a metric of our own that computes the number of method parameters that do not use

concrete data-types, or use Java generics with type variables instantiated with non-concrete data-types. We have

defined the ATC metric after noting that some T-based code-first tools map abstract data-types and badly defined

generics to xsd:any constructors, which have been identified as root causes for the Whatever types anti-pattern

(Pasley, 2006) (Crasso, Rodriguez, Zunino, & Campo, 2010a).

Hypothesis 6 (26 : APEPMH →). The higher the number of public methods belonging to the class

implementing a service that do not receive input parameters (EPM metric), the more frequent the Empty

messages anti-pattern occurrences.

Mateos et al., Avoiding WSDL Bad Practices in Code

Similarly to ATC, we designed the EPM (Empty Parameters Methods) metric to count the number of methods in a

class that do not receive parameters. We believe that increasing the number of methods without parameters may

increase the likelihood of the Empty messages

kind of methods onto an operation associated with one input

The next section describes the experiments that were carried out to test these six hypotheses as well as the

between other OO metrics not included in the above list and the studied anti

4 Statistical analysis and experiments

The approach chosen for testing the hypotheses of the previous section consists on gathering OO metrics from open

source Web Services, and checking the values obtained against the number of anti

documents, using correlation methods to validate the usefulness of these metrics for anti

perform the analysis, we first implemented the software pipeline depicted in Figure 4

pipeline was a Web Service data

libraries needed for compiling and generating WSDL documents. The output, on the other hand, was a detailed per

service report of the statistical correlation between object

anti-pattern occurrences calculated on the WSDL documents. It is worth noting that both the software and the data

set used in the experiments are available upon request.

Figure

The described pipeline has been implemented using software tools for automatizing metrics recollection and anti

patterns detection, since metrics recollection is an extremely sensitive task for this experiment, but also a task that

would require a huge amount of time to be manually carried on. Besides being a time consuming task, it was an

error prone task. Therefore, we extended

Chidamber-Kemerer metrics (Chidamber & Kemerer, 1994)

To measure the number of anti-patterns, we employed an automatic WSDL anti

Rodriguez, Zunino, & Campo, 2010b)

2010b), or Detector for short, is a software

suffers from the anti-patterns of (Crasso, Rodriguez, Zunino, & Campo, 2010a)

given WSDL document as input, and

heuristics are based on the different anti

Not immediately apparent. The Evident heuristics deal with tho

only the structure of WSDL documents, like

Whatever types anti-patterns. The Not immediately apparent heuristics deal with detecting

in the same port-type and Ambiguous names

comments present in WSDL documents. As explained in

authors combine machine learning and natural processing language techniques to detect the anti

second group.

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-

the EPM (Empty Parameters Methods) metric to count the number of methods in a

class that do not receive parameters. We believe that increasing the number of methods without parameters may

Empty messages anti-pattern occurrences, because T-based code

kind of methods onto an operation associated with one input message element not conveying XML data.

The next section describes the experiments that were carried out to test these six hypotheses as well as the

between other OO metrics not included in the above list and the studied anti-patterns.

4 Statistical analysis and experiments

The approach chosen for testing the hypotheses of the previous section consists on gathering OO metrics from open

rce Web Services, and checking the values obtained against the number of anti-patterns found in services WSDL

documents, using correlation methods to validate the usefulness of these metrics for anti

plemented the software pipeline depicted in Figure 4. Basically, the input to this

pipeline was a Web Service data-set that contained, for each service, its implementation code and dependency

libraries needed for compiling and generating WSDL documents. The output, on the other hand, was a detailed per

service report of the statistical correlation between object-oriented metrics taken on the implementation

pattern occurrences calculated on the WSDL documents. It is worth noting that both the software and the data

set used in the experiments are available upon request.

ure 4 Software configuration used in the experiments

The described pipeline has been implemented using software tools for automatizing metrics recollection and anti

patterns detection, since metrics recollection is an extremely sensitive task for this experiment, but also a task that

require a huge amount of time to be manually carried on. Besides being a time consuming task, it was an

error prone task. Therefore, we extended ckjm (Spinellis, 2005), a Java-based tool that computes a sub

(Chidamber & Kemerer, 1994).

patterns, we employed an automatic WSDL anti-pattern detection tool

Rodriguez, Zunino, & Campo, 2010b). The WSDL Anti-patterns Detector (Crasso, Rodriguez, Zunino, & Campo,

, or Detector for short, is a software whose purpose is automatically checking whether a WSDL document

(Crasso, Rodriguez, Zunino, & Campo, 2010a) or not. The Detector receives a

given WSDL document as input, and uses heuristics for returning a list of anti-pattern occurrences. As these

heuristics are based on the different anti-pattern definitions, there are two groups of heuristics, namely Evident and

Not immediately apparent. The Evident heuristics deal with those anti-patterns that can be detected by analyzing

only the structure of WSDL documents, like Empty Messages, Enclosed data-types, Redundant data models

patterns. The Not immediately apparent heuristics deal with detecting

Ambiguous names anti-patterns because they require a semantic analysis of the names and

comments present in WSDL documents. As explained in (Crasso, Rodriguez, Zunino, &

authors combine machine learning and natural processing language techniques to detect the anti

-48 (2012) 38

the EPM (Empty Parameters Methods) metric to count the number of methods in a

class that do not receive parameters. We believe that increasing the number of methods without parameters may

based code-first tools map this

element not conveying XML data.

The next section describes the experiments that were carried out to test these six hypotheses as well as the relation

The approach chosen for testing the hypotheses of the previous section consists on gathering OO metrics from open

patterns found in services WSDL

documents, using correlation methods to validate the usefulness of these metrics for anti-pattern prediction. To

. Basically, the input to this

its implementation code and dependency

libraries needed for compiling and generating WSDL documents. The output, on the other hand, was a detailed per-

oriented metrics taken on the implementation code and

pattern occurrences calculated on the WSDL documents. It is worth noting that both the software and the data-

The described pipeline has been implemented using software tools for automatizing metrics recollection and anti-

patterns detection, since metrics recollection is an extremely sensitive task for this experiment, but also a task that

require a huge amount of time to be manually carried on. Besides being a time consuming task, it was an

based tool that computes a sub-set of the

pattern detection tool (Crasso,

(Crasso, Rodriguez, Zunino, & Campo,

whose purpose is automatically checking whether a WSDL document

or not. The Detector receives a

pattern occurrences. As these

pattern definitions, there are two groups of heuristics, namely Evident and

patterns that can be detected by analyzing

Redundant data models, and

patterns. The Not immediately apparent heuristics deal with detecting Low cohesive operations

patterns because they require a semantic analysis of the names and

(Crasso, Rodriguez, Zunino, & Campo, 2010b), the

authors combine machine learning and natural processing language techniques to detect the anti-patterns of the

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 39

In the tests, we used a data-set of 154 different real services whose implementations were collected via two code

search engines, namely the Merobase component finder (http://merobase.com) and the Exemplar engine

(Grechanik, Fu, Xie, McMillan, Poshyvanyk, & Cumby, 2010). Merobase allows users to harvest software

components from a large variety of sources (e.g. Apache, SourceForge, and Java.net) and has the unique feature of

supporting interface-driven searches, i.e. searches based on the abstract interface that a component should offer,

apart from that of based on the text in its source code. On the other hand, Exemplar relies on a hybrid approach to

keyword-based search that combines the benefits of textual processing and intrinsic qualities of code to mine

repositories and consequently returns complete projects. Complementary, we collected projects from Google Code.

All in all, the generated data-set provided the means to perform a significant evaluation in the sense that the

different Web Service implementations came from real-life software engineers.

After collecting the components and projects, we uniformized the associated services by explicitly providing a Java

interface in order to facade their implementations. Each WSDL document was obtained by feeding Axis’

Java2WSDL2 with the corresponding interface. Finally, the correlation analysis was performed by using Apache’s

Commons Math library
3
, and plots were obtained via JasperReports

4
.

The rest of the Section is structured as follows. Section 4.1 describes the statistical correlation results between OO

metrics and anti-patterns that were obtained for the above data-set. Lastly, Section 4.2 explores several service

refactorings at the source code level and their effect on the anti-patterns of resulting WSDL documents.

4.1 Object-Oriented metrics and WSDL anti-patterns: Correlation analysis

The commonest way of analyzing the empirical relation between independent and dependent variables is by

defining and statistically testing experimental hypotheses (Fenton & Pfleeger, 1998). In this sense, we set the 6 anti-

patterns described up to now as the dependent variables, whose values were produced by using the Detector, while

we used OO metrics as the independent variables, which were computed via the ckjm tool.

We used 11 metrics for measuring services implementations, which played the role of independent variables.

WMC, CBO, RFC, and LCOM have been selected from the work of Chindamber and Kemerer (Chidamber &

Kemerer, 1994). The WMC (Weighted Methods Per Class) metric counts the methods of a class. CBO (Coupling

Between Objects) counts how many methods or instance variables defined by other classes are accessed by a given

class. RFC (Response for Class) counts the methods that can potentially be executed in response to a message

received by an object of a given class. LCOM (Lack of Cohesion Methods) provides a mean to measure how well

the methods of a class are related to each other, with higher values of the metric standing for less cohesive methods.

From the work of Bansiya and Davis (Bansiya & Davis, 2002) we picked CAM (Cohesion Among Methods of

Class) metric. CAM computes the relatedness among methods based upon the parameter list of these methods.

Additionally, we used a number of ad-hoc measures we thought could be related to the WSDL metrics or studied

anti-patterns, namely TPC (Total Parameter Count), APC (Average Parameter Count), ATC (Abstract Type Count),

VTC (Void Type Count), and EPM (Empty Parameters Methods). The last employed metric was the well-known

lines of code (LOC) metric.

The descriptive statistics for the anti-patterns and metrics studied are shown in Table 2. These values will be useful

to help us interpret the results of the analysis throughout this section. In addition, they will facilitate comparisons

against results from future similar studies.

We used the Spearman’s rank correlation coefficient in order to establish the existing relations between the two

kinds of variables of our model, i.e. the OO metrics (independent variables) and the anti-patterns (dependent

variables). Table 3 depicts the correlation factors among the studied OO metrics. The cell values in bold are those

coefficients which are statistically significant at the 5% level, i.e. p-value < 0.05, which is a common choice when

performing statistical studies (Stigler, 2008). The sign of the correlation coefficients defines the direction of the

2
 http://ws.apache.org/axis/java

3
 Apache’s Commons Math library, http://commons.apache.org/math

4
 JasperReports, http://jasperforge.org/projects/

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 40

relationship, i.e. positive or negative. A positive relation means that when the independent variable grows, the

dependent variable grows too, and when the independent variable falls the dependent goes down as well. Instead, a

negative relation means that when independent variables grow, the dependent metrics fall, and vice versa. The

absolute value, or correlation factor, indicates the intensiveness of the relation regardless of its sign. The correlation

factors depicted in Table 3 clearly show that the metrics studied are not statistically independent and, therefore,

capture redundant information. In other words, if a group of variables in a data-set are strongly correlated, these

variables are likely to measure the same underlying dimension (i.e. cohesion, complexity, coupling, etc.). In the

case of our study, it can be seen from Table 3 that the metrics WMC, RFC, LOC and LCOM have a perfect

correlation, i.e. |correlation factor| = 1, and therefore only one of them needs to be considered. Given that WMC is

more popular among developers and is better supported in IDE tools compared to the other three, we chose to

exclude the latter from further analysis and focus on WMC instead.

Metrics Minimum Maximum Mean Std. Dev

WMC 1.00 97.00 5.73 11.13

CBO 0.00 27.00 2.02 2.91

RFC 1.00 97.00 5.73 11.13

LCOM 0.00 4656.00 75.21 427.42

LOC 1.00 97.00 5.73 11.13

CAM 0.13 1.00 0.78 0.23

TPC 0.00 228.00 10.91 24.23

APC 0.00 17.00 2.04 1.83

ATC 0.00 20.00 1.09 2.25

VTC 0.00 25.00 1.05 3.53

EPM 0.00 11.00 0.57 1.64

Ambiguous names (1AP) 1.00 243.00 13.43 28.77

Empty messages (2AP) 0.00 11.00 0.57 1.64

Enclosed data model (3AP) 0.00 44.00 5.41 7.09

Low cohesive operations in the

same port-type (4AP)

0.00 910.00 9.78 74.99

Redundant data models (5AP) 0.00 891.00 23.46 100.46

Whatever types (6AP) 0.00 17.00 0.92 1.86

Table 2: Descriptive statistics

Metri

c

WMC CBO RFC LCO

M

LOC CAM TPC APC GTC VTC EPM

WMC 1.00 0.20 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

CBO - 1.00 0.20 0.20 0.20 -0.37 0.29 0.26 0.41 -0.07 -0.15

RFC - - 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

LCO

M

- - - 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

LOC - - - - 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

CAM - - - - - 1.00 -0.63 0.08 -0.24 -0.35 -0.36

TPC - - - - - - 1.00 0.55 0.33 0.28 0.08

APC - - - - - - - 1.00 0.30 0.04 -0.33

GTC - - - - - - - - 1.00 0.03 -0.18

VTC - - - - - - - - - 1.00 0.38

EPM - - - - - - - - - - 1.00

Table 3: Correlation among OO metrics

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 41

Table 4 shows the correlation between the considered OO metrics and the anti-patterns, namely Ambiguous names (

1AP), Empty messages (2AP), Enclosed data model (3AP), Low cohesive operations in the same port-type (

4AP), Redundant data models (5AP) and Whatever types (6AP). The factors in bold represent those with a p-

value < 0.05. From the table, it can be observed that there is a high statistical correlation between a sub-set of the

analyzed metrics and the anti-patterns. Concretely, two out of the eleven metrics, i.e. WMC and CBO, are positively

correlated to four of the six studied anti-patterns, i.e. Ambiguous names (1AP), Enclosed data model (3AP), Low

cohesive operations in the same port-type (4AP) and Redundant data models (5AP). Additionally, ATC and

EPM are the best predictors for the two remaining anti-patterns, i.e. Empty messages (2AP) and Whatever types (

6AP).

Anti-

patterns /

Metrics

WMC CBO CAM TPC APC ATC VTC EPM

1AP 0.91 0.29 -0.75 0.76 0.02 0.20 0.09 0.21

2AP 0.41 -0.15 -0.36 0.08 -0.33 -0.18 0.37 1.0

3AP 0.08 0.92 -0.22 0.19 0.27 0.48 -0.12 -0.21

4AP 0.64 0.11 -0.56 0.51 -0.004 0.11 0.40 0.40

5AP 0.87 0.13 -0.63 0.65 -0.11 0.06 0.08 0.25

6AP 0.17 0.43 -0.23 0.33 0.31 0.96 -0.02 -0.24

Table 4: Correlation between OO metrics and anti-patterns

By looking at Table 4 one could state that there is a high statistical correlation between eight of the analyzed OO

metrics and, at least, one anti-pattern. Initially, this implies that these independent variables could be somehow

“controlled” by software engineers attempting to obtain better WSDL documents, in terms of anti-patterns.

However, as determining the best set of controllable independent variables would deserve a deeper analysis, we

will focus on determining a minimalist sub-set of OO metrics for this paper. This does not only improve the

readability of the results but, as will be explained in Section 4.2, in order to avoid WSDL anti-patterns, early code

refactorings by basing on OO metrics values are necessary. Thus, the smaller the number of considered OO metrics

upon refactoring, the more simple (but still effective) this refactoring process becomes. Therefore, the 8x6 Table 4

may be reduced into a new 4x6 table (see Table 5), which represents a minimalist sub-set of correlated metrics.

Anti-patterns /

Metrics

WMC CBO ATC EPM

1AP 0.91 - - -

2AP - - - 1.00

3AP - 0.92 - -

4AP 0.64 - - -

5AP 0.88 - - -

6AP - - 0.97 -

Table 5: Strongest correlations between OO metrics and anti-patterns

To do this, it is worth noting that there are two other OO metrics that are highly correlated to several anti-patterns,

namely CAM and TPC. However, as we showed in Table 3, these two metrics present high correlation factors with

Mateos et al., Avoiding WSDL Bad Practices in Code

WMC and therefore are likely to measure redundant information. Then, only WMC needs to be considered.

Furthermore, if we want to keep only the highest correlated pairs of metrics and anti

below |0.6| at the 5% level can be discarded. Then, the VTC and APC metrics can be excluded.

Additionally, for the sake of readability, we have employed a different approach to depict the correlation matrix of

Table 5, which is shown in Figure 5

whereas cells with circles represent correlation factors at the 5% level. The diameter of a circle represents a

correlation factor, i.e. the bigger the correlation factor the bigger the diameter. The color of a circle

correlation sign, being black used for positive correlations and white for negative ones. Furthermore, those cells

representing each of the correlations proposed on the hypotheses defined in Section 3

1H through 6H). Then, it can be seen that the six bigger circles in the Figure, i.e. the six highest statistically

significant correlation factors, correspond precisely with the six defined hypotheses, showing that they are

supported by our data, thus confirming their

Figure 5: Graphical representation of the correlation between OO metrics and anti

4.2 Early code refactorings for improving WSDL documents

The correspondences between the minimalist set of OO metrics and the 6 anti

statistically significant for the analyzed Web Service data

metric values taken on the code of a Web Service directly affects anti

WSDL. Then, we performed some source code refactorings driven by these metrics on our data

the effect on anti-pattern occurrence. We conducted fi

data-sets, one for each of the four mentioned metrics and a fifth one where all the previous refactorings were

included. Moreover, each refactoring was applied on the original data

from each other. For the sake of brevity, in the rest of this section we will refer to these new refactored data

RefactoredWMC (1DS), RefactoredCBO (

RefactoredAll (5DS). It is worth noting that each of these refactorings provides a practical way to test the validity

of the hypotheses defined in Section 3

same effect on its associated anti-

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-

WMC and therefore are likely to measure redundant information. Then, only WMC needs to be considered.

Furthermore, if we want to keep only the highest correlated pairs of metrics and anti-patterns, the correlation factors

e 5% level can be discarded. Then, the VTC and APC metrics can be excluded.

Additionally, for the sake of readability, we have employed a different approach to depict the correlation matrix of

, which is shown in Figure 5. In the Figure, blank cells stand for not statistically significant correlations,

whereas cells with circles represent correlation factors at the 5% level. The diameter of a circle represents a

correlation factor, i.e. the bigger the correlation factor the bigger the diameter. The color of a circle

correlation sign, being black used for positive correlations and white for negative ones. Furthermore, those cells

representing each of the correlations proposed on the hypotheses defined in Section 3 show their associated names (

). Then, it can be seen that the six bigger circles in the Figure, i.e. the six highest statistically

significant correlation factors, correspond precisely with the six defined hypotheses, showing that they are

supported by our data, thus confirming their validity.

Graphical representation of the correlation between OO metrics and anti

4.2 Early code refactorings for improving WSDL documents

The correspondences between the minimalist set of OO metrics and the 6 anti-patterns, which were found to be

statistically significant for the analyzed Web Service data-set suggest that, in practice, an increment/decrement of

e of a Web Service directly affects anti-pattern occurrences in its code

WSDL. Then, we performed some source code refactorings driven by these metrics on our data

pattern occurrence. We conducted five rounds of refactoring which in turn produced five new

sets, one for each of the four mentioned metrics and a fifth one where all the previous refactorings were

included. Moreover, each refactoring was applied on the original data-set, meaning they

from each other. For the sake of brevity, in the rest of this section we will refer to these new refactored data

), RefactoredCBO (2DS), RefactoredATC (3DS), RefactoredEPM (

). It is worth noting that each of these refactorings provides a practical way to test the validity

of the hypotheses defined in Section 3, in the sense that a variation on each OO metric value should produce the

-patterns. For example, the RefactoredCBO (2DS) data

-48 (2012) 42

WMC and therefore are likely to measure redundant information. Then, only WMC needs to be considered.

patterns, the correlation factors

e 5% level can be discarded. Then, the VTC and APC metrics can be excluded.

Additionally, for the sake of readability, we have employed a different approach to depict the correlation matrix of

atistically significant correlations,

whereas cells with circles represent correlation factors at the 5% level. The diameter of a circle represents a

correlation factor, i.e. the bigger the correlation factor the bigger the diameter. The color of a circle stands for the

correlation sign, being black used for positive correlations and white for negative ones. Furthermore, those cells

show their associated names (

). Then, it can be seen that the six bigger circles in the Figure, i.e. the six highest statistically

significant correlation factors, correspond precisely with the six defined hypotheses, showing that they are

Graphical representation of the correlation between OO metrics and anti-patterns

patterns, which were found to be

set suggest that, in practice, an increment/decrement of

pattern occurrences in its code-first generated

WSDL. Then, we performed some source code refactorings driven by these metrics on our data-set so as to quantify

ve rounds of refactoring which in turn produced five new

sets, one for each of the four mentioned metrics and a fifth one where all the previous refactorings were

set, meaning they are completely independent

from each other. For the sake of brevity, in the rest of this section we will refer to these new refactored data-sets as

), RefactoredEPM (4DS) and

). It is worth noting that each of these refactorings provides a practical way to test the validity

, in the sense that a variation on each OO metric value should produce the

) data-set, which produces a

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 43

decrement of the CBO metric, is expected to have a lower number of occurrences of the Enclosed data model (3AP

) anti-pattern, since hypothesis 1H stated that as the value of the OO metric increases so does the number of

occurrences of the anti-pattern, thus suggesting a positive correlation between the two.

The first metric to consider was WMC. In this case we refactored the original data-set by splitting the services that

contained more than one operation into two new services so that on average the metric in the refactored services

represented a 50% of the original value. This refactoring resulted in a new data-set that contained approximately

twice as many services as the original one.

Next, we focused on CBO by modifying the original services’ implementation code to replace every occurrence of a

complex data-type with the Java primitive type String. This refactoring did not modify the size of the resulting data-

set with respect to the original one.

In a third refactoring round, we focused on the ATC metric, which computes the number of parameters in a class

that are declared as data structures –i.e. collections– that do not use Java generics or as Java’s root class Object. In

the former case, when this practice is followed, these collections cannot be automatically mapped onto concrete

XSD data-types for both the container collective data-type and the contained data-type in the final WSDL. A similar

problem arises with parameters whose data-type is Object. In this sense, we modified the original services in order

to reduce ATC by, basically, replacing generic arguments with concrete ones, which resulted in a data-set of equal

size.

The last metric taken into consideration was EPM, which counts the number of methods in a class that do not

receive input parameters. The refactoring applied in this case was to introduce a new boolean parameter to each of

these methods. Finally, a last round of refactoring was performed by deriving a new data-set that included all the

above mentioned code modifications. Tables 6 and 7 show the impact of the refactoring process on the OO metrics

and the anti-patterns, respectively. For those metric on which the refactoring is focused, the cell value is in bold.

Metric Original

(average)
1DS

 (average)

2DS

 (average)

3DS

 (average)

4DS

 (average)

5DS

 (average)

WMC 8.64 4.45 8.64 8.64 8.64 4.45

CBO 2.02 1.39 0.00 2.02 2.02 0.00

ATC 1.11 0.59 0.68 0.04 1.11 0.00

EPM 0.94 0.44 0.94 0.94 0.00 0.00

Table 6: Refactoring: impact on OO metrics

Anti-pattern Original

(avg.)
1DS

(avg.)

2DS

 (avg.)

3DS

 (avg.)

4DS

 (avg.)

5DS

 (avg.)

Ambiguous names (A P1) 20.02 10.79 20.02 20.02 20.96 11.24

Empty messages (A P2) 0.94 0.44 0.94 0.94 0.00 0.00

Enclosed data model (A P3) 3.28 2.61 0.04 3.25 3.28 0.01

Low cohesive operations in the same port-type (A P4) 24.62 8.19 24.62 24.62 19.04 6.25

Redundant data models (A P5) 52.96 15.10 132.96 53.89 57.81 34.10

Whatever types (A P6) 0.83 0.43 0.62 0.00 0.83 0.00

Total number of anti-patterns 102.66 37.58 179.21 102.72 101.92 51.59

Table 7: Refactoring: impact on anti-patterns

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 44

From the results presented it can be observed that a decrement on the values of the OO metrics produced the same

effect on their associated anti-patterns. Concretely, reducing the value of WMC by 50% caused an average decrease

of the Ambiguous names (1AP), Low cohesive operations in the same port-type (4AP) and Redundant data

models (5AP) anti-patterns occurrences of 46.09%, 66.74% and 71.48%, respectively. Similar results were

obtained when refactoring the CBO, EPM and ATC metrics producing an average decrement of the Enclosed data

model (3AP), Empty messages (2AP) and Whatever types (6AP) anti-patterns by 98.85%, 100.00% and

100.00%, respectively. This provides practical evidence to better support part of the correlation analysis of the

previous section.

It can also be observed that, while the individual metric refactorings had a positive impact on their associated anti-

patterns, some of them also introduced increments in the number of occurrences of other anti-patterns. To clarify

this, let us take for example the case of the CBO metric refactoring, which not only produced a decrement on the

Enclosed data model (3AP) anti-pattern, but also a considerable increment on the Redundant data models (5AP)

anti-pattern. Furthermore, the negative impact of this refactoring outweighs its benefits since the total number of

anti-patterns is higher than those found in the original data-set. This kind of situations are known as trade-offs. As

in software literature in general, here a trade-off represents a situation in which the software engineer should

analyze and select among different metric-driven implementation alternatives. Two other metrics represent trade-off

opportunities. By decreasing the ATC metric, resulting WSDL documents will present a smaller value for the

Whatever types (6AP) anti-pattern than the original WSDL document. However, this will cause an increment of

the Redundant data models (5AP) anti-pattern. A similar situation occurs with the EPM metric and the Empty

messages (2AP) and Redundant data models (5AP) anti-patterns.

Interestingly, controlling the WMC metric is safe, in the sense that it does not present trade-off situations and by

modifying its value no undesired collateral effects will be generated. Moreover, as shown in Table 6, when the

WMC metric is refactored to reduce its value the rest of the OO metrics are indirectly affected and their values

decrease as well. A consequence of this fact is that all the anti-patterns reduce their total number of occurrences,

and not just those associated with WMC.

Finally, it is worth noting that when all the refactorings were applied on the same data-set (RefactoredAll) the total

number of anti-patterns was reduced with respect to the original data-set but it was slightly higher than the one

obtained by applying only the WMC refactoring. Considering that code refactoring is a time consuming process

(Fowler, 1999), we can conclude that if the goal is to minimize the total number of anti-patterns then focusing only

on WMC for the refactorings results in the most efficient choice since, as we mentioned previously, decreasing its

value indirectly affects all the other OO metrics.

The results of the refactoring process presented in this section, particularly the fact that WMC is the metric that

produces the lowest total number of anti-patterns when refactored, are consistent with the hypotheses defined in

Section 3. Concretely, three of the six defined hypotheses, i.e.
2H through

4H , proposed a positive correlation

between WMC and three anti-patterns, namely Ambiguous names (1AP), Low cohesive operations in the same

port-type (4AP) and Redundant data models (5AP). Furthermore, these anti-patterns present the highest average

number of occurrences out of the six studied anti-patterns, as shown in Table 2. In contrast, the remaining three

metrics, i.e. CBO, ATC and EPM, are associated with a single anti-pattern each, as stated in hypotheses 1H , 5H

and 6H , and they occur considerably less frequently on the original data-set. Then, their individual impact on the

total number of anti-patterns is far less significant than the one from WMC. These results can be better observed in

Figure 6.

Mateos et al., Avoiding WSDL Bad Practices in Code

Figure 6 Refactoring: impact on the total number of anti

5 Related work

Certainly, our work is to some point related to a number of efforts that can be grouped into two broad classes. On

the one hand, there is a substantial amount of research concerning improving services with respect to the quality of

the contracts exposed to consumers

Rodriguez, Zunino, & Campo, 2010d)

Rodriguez, Zunino, & Campo, 2010a)

identified problem with a practical solution, thus conforming a unified catalog of WSDL discoverability anti

patterns. The importance of these anti

ca. 400 WSDL documents and comparing the retrieval effectiveness of several syntactic discovery mechanisms

when using the original WSDL documents and the improved ones, i.e. the WSDL documents that have been

refactored according to each anti-pattern

those achieved by using the original data

empirical evidence that suggests that the improvements are explained by the removal of di

rather than the incidence of the underlying discovery mechanism. Furthermore, the importance of WSDL

discoverability anti-patterns has been increasingly emphasized in

when the authors associate anti-patterns with software API design principles. In this sense, we can say that our

approach is related to such efforts since we share the same goal, i.e. obtaining more legible, discoverable and clear

service contracts.

On the other hand, in our approach, these aspects are quantified in the obtained contracts by means of specific

WSDL-level metrics. Furthermore, we found that the values of such metrics can be “controlled” based on the values

of OO metrics taken on the code implementing services prior to WSDL generation. Then, our approach is also

related to some efforts that attempt to predict the value of quality metrics (e.g. number of bugs or popularity) in

conventional software based on traditiona

(Gyimothy, Ferenc, & Siket, 2005)

is based on the results presented in

around 90 web services is statistically analyzed to determine whether or not a high correlation factor could be

established between WSDL anti-patterns and OO metrics. The mentioned approach showed

statistical correlation between the two variables

patterns are also reduced. However, one of the

only two metrics were taken into consideration for the refactoring rounds, i.e. WMC and ATC. Furthermore, the

impact of these code modifications were not analyzed separately for each metric but combined on the same data

This, in turn, did not allow for a trade

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-

Refactoring: impact on the total number of anti-pattern occurrences

Certainly, our work is to some point related to a number of efforts that can be grouped into two broad classes. On

the one hand, there is a substantial amount of research concerning improving services with respect to the quality of

consumers (Fan & Kambhampati, 2005) (Blake & Nowlan, 2008)

Rodriguez, Zunino, & Campo, 2010d) (Crasso, Rodriguez, Zunino, & Campo, 2010a)

Rodriguez, Zunino, & Campo, 2010a) subsumes the research mentioned previously, and also

identified problem with a practical solution, thus conforming a unified catalog of WSDL discoverability anti

patterns. The importance of these anti-patterns was measured by manually removing anti

ments and comparing the retrieval effectiveness of several syntactic discovery mechanisms

when using the original WSDL documents and the improved ones, i.e. the WSDL documents that have been

pattern solution. The fact that the results related to the improved data

those achieved by using the original data-set regardless the approaches to service discovery employed, provides

empirical evidence that suggests that the improvements are explained by the removal of di

rather than the incidence of the underlying discovery mechanism. Furthermore, the importance of WSDL

patterns has been increasingly emphasized in (Crasso, Rodriguez, Zuni

patterns with software API design principles. In this sense, we can say that our

approach is related to such efforts since we share the same goal, i.e. obtaining more legible, discoverable and clear

On the other hand, in our approach, these aspects are quantified in the obtained contracts by means of specific

level metrics. Furthermore, we found that the values of such metrics can be “controlled” based on the values

trics taken on the code implementing services prior to WSDL generation. Then, our approach is also

related to some efforts that attempt to predict the value of quality metrics (e.g. number of bugs or popularity) in

conventional software based on traditional OO metrics at implementation time (Subramanyam & Krishnan, 2003)

(Gyimothy, Ferenc, & Siket, 2005) (Meirelles, Jr., Miranda, Kon, Terceiro, & Chavez, 2010)

is based on the results presented in (Ordiales, Mateos, Crasso, & Zunino, 2011) on which a public data

around 90 web services is statistically analyzed to determine whether or not a high correlation factor could be

patterns and OO metrics. The mentioned approach showed

atistical correlation between the two variables, and that by decreasing the values of some OO metrics certain anti

patterns are also reduced. However, one of the limitations of (Ordiales, Mateos, Crasso, & Zunino, 2011)

only two metrics were taken into consideration for the refactoring rounds, i.e. WMC and ATC. Furthermore, the

impact of these code modifications were not analyzed separately for each metric but combined on the same data

low for a trade-off analysis between the different refactoring strategies.

-48 (2012) 45

pattern occurrences

Certainly, our work is to some point related to a number of efforts that can be grouped into two broad classes. On

the one hand, there is a substantial amount of research concerning improving services with respect to the quality of

(Blake & Nowlan, 2008) (Pasley, 2006) (Crasso,

(Crasso, Rodriguez, Zunino, & Campo, 2010a). In particular, (Crasso,

subsumes the research mentioned previously, and also supplies each

identified problem with a practical solution, thus conforming a unified catalog of WSDL discoverability anti-

patterns was measured by manually removing anti-patterns from a data-set of

ments and comparing the retrieval effectiveness of several syntactic discovery mechanisms

when using the original WSDL documents and the improved ones, i.e. the WSDL documents that have been

the results related to the improved data-sets surpass

set regardless the approaches to service discovery employed, provides

empirical evidence that suggests that the improvements are explained by the removal of discoverability anti-patterns

rather than the incidence of the underlying discovery mechanism. Furthermore, the importance of WSDL

(Crasso, Rodriguez, Zunino, & Campo, 2010d),

patterns with software API design principles. In this sense, we can say that our

approach is related to such efforts since we share the same goal, i.e. obtaining more legible, discoverable and clear

On the other hand, in our approach, these aspects are quantified in the obtained contracts by means of specific

level metrics. Furthermore, we found that the values of such metrics can be “controlled” based on the values

trics taken on the code implementing services prior to WSDL generation. Then, our approach is also

related to some efforts that attempt to predict the value of quality metrics (e.g. number of bugs or popularity) in

(Subramanyam & Krishnan, 2003)

o, & Chavez, 2010). Particularly, our work

on which a public data-set of

around 90 web services is statistically analyzed to determine whether or not a high correlation factor could be

patterns and OO metrics. The mentioned approach showed that there is significant

and that by decreasing the values of some OO metrics certain anti-

(Ordiales, Mateos, Crasso, & Zunino, 2011) is that

only two metrics were taken into consideration for the refactoring rounds, i.e. WMC and ATC. Furthermore, the

impact of these code modifications were not analyzed separately for each metric but combined on the same data-set.

off analysis between the different refactoring strategies.

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 46

6 Conclusions

Service contract design and particularly WSDL document specification, plays the most important role in enabling

third-party consumers to understand, discover and reuse Web Services (Crasso, Rodriguez, Zunino, & Campo,

2010d). In previous research, it has been shown that Web Services have fewer chances of being reused unless some

common WSDL discoverability anti-patterns are removed (Crasso, Rodriguez, Zunino, & Campo, 2010a).

However, an inherent prerequisite for removing such anti-patterns is that services are built in a contract-fist manner,

by which developers have more control on the WSDL of their services. Mostly, the industry is based on code-first

Web Service development, which means that developers first derive a service implementation and then generate the

corresponding service contracts from the implemented code.

In this paper, we have focused on the problem of how to obtain WSDL documents that are free from those

undesirable anti-patterns when using code-first, independently of the generation tool used. Based on the approach

followed by several existing works in which some quality attributes of the resulting software are predicted during

development time and in particular on the approach presented in (Ordiales, Mateos, Crasso, & Zunino, 2011), we

worked on the hypothesis that anti-pattern occurrences at the WSDL level can be avoided by basing on the value of

OO metrics taken at the code implementing services. We used well-established statistical methods for coming out

with the set of OO metrics that best correlate and explain anti-pattern occurrence by using a data-set of real Web

Services. To validate these findings from a practical perspective, we also studied the effect of applying metric-

driven code refactorings to some of the Web Services of the data-set on the anti-patterns in the generated WSDL

documents. Interestingly, we found that these code refactorings effectively reduce anti-patterns, thus improving the

resulting service contracts.

The evaluation of this work can be criticized at first sight, by basing on the fact that we employed only one code-

first tool for the test. However, it is worth remarking that many code-first tools base on the same mapping function.

Therefore, though the results cannot be generalized to all available code-first tools, the studied dependent variables

are more likely to be affected by applying refactorings to service implementations rather than by changing the

WSDL generation tool.

We are extending this work in several directions. On one hand, we are studying more refactorings, which in turn

could be automated with the help of an IDE. As a starting point, we will use IntelliJ Idea

(http://www.jetbrains.com/idea), a Java-based IDE that has many built-in refactoring functions and is designed to be

extensible. Second, we will incorporate into our analysis less popular, but nevertheless other WSDL generation

tools such as EasyWSDL and JBoss’ wsprovide. The goal of this task is bringing our findings to a broader audience.

Third, we will study the relationships between the anti-patterns and other OO metrics, including traditional metrics

such as the ones proposed by Halstead, McCabe, or Henry and Kafura (Tsui & Karam, 2006), and at the same time

newer ones (Al Dallal, 2011). This could in turn eventually lead to investigate the effect of other kind of

refactorings.

Finally, another research line we are planning to work on relates to service discovery. It is known that, when

developing contract-first Web Services, removing WSDL anti-patterns or at least reducing the number of their

occurrences increases the retrieval efficiency of syntactic Web Service search engines and thus simplifies discovery

(Crasso, Rodriguez, Zunino, & Campo, 2010c). In this context, anti-pattern avoidance is manually carried out by

developers as they design the contract of their Web Services. In the approach presented in this paper, on the

contrary, anti-patterns are removed or mitigated automatically and indirectly based on source code refactorings. In

this sense, we will investigate the impact of the different refactorings and the extent to which they are applied in the

effectiveness of service retrieval. Moreover, we have found and reported in this paper that there are trade-off

situations where a refactoring for a particular OO metric may yield good results as measured by the number of some

anti-pattern occurrences but bad results with respect to other anti-patterns. Then, a specific refactoring might have a

positive impact on the total number of anti-patterns but produce the opposite effect on service discovery. Therefore,

addressing this issue is subject of further research.

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 47

Acknowledgments

We acknowledge the financial support provided by ANPCyT (PAE-PICT 2007-02311).

References

Al Dallal, J. (2011). Measuring the Discriminative Power of Object-Oriented Class Cohesion Metrics. Software

Engineering, IEEE Transactions on , 37 (6), 788-804.

Bansiya, J., & Davis, C. (2002). A Hierarchical Model for Object-Oriented Design Quality Assessment. IEEE

Transactions on Software Engineering , 28, 4-17.

Blake, M. B., & Nowlan, M. (2008). Taming Web Services from the Wild. IEEE Internet Computing , 12, 62-69.

Chidamber, S., & Kemerer, C. (1994). A Metrics Suite for Object Oriented Design. IEEE Transactions on Software

Engineering , 20 (6), 476-493.

Consortium, W. (June de 2007). SOAP Version 1.2 Part 1: Messaging Framework. SOAP Version 1.2 Part 1:

Messaging Framework .

Crasso, M., Rodriguez, J. M., Zunino, A., & Campo, M. (2010a). An analysis of frequent ways of making

undiscoverable Web Service descriptions. Electronic Journal of SADIO - Special issue of Software Enginneering in

Argentina: Present and Future Trends (Extended version of selected papers ASSE 2009) , 9 (1), 5-23.

Crasso, M., Rodriguez, J. M., Zunino, A., & Campo, M. (2010b). Automatically Detecting Opportunities for Web

Service Descriptions Improvement. En W. Cellary, & E. Estevez (Ed.). (págs. 139-150). Springer.

Crasso, M., Rodriguez, J. M., Zunino, A., & Campo, M. (2010c). Improving Web Service Descriptions for effective

service discovery. Science of Computer Programming , 75 (11), 1001-1021.

Crasso, M., Rodriguez, J. M., Zunino, A., & Campo, M. (2010d). Revising WSDL Documents: Why and How.

IEEE Internet Computing , 14 (5), 30-38.

Crasso, M., Zunino, A., & Campo, M. (2011). A survey of approaches to Web Service discovery in Service-

Oriented Architectures. Journal of Database Management , 22 (1), 103-134.

Crasso, M., Zunino, A., & Campo, M. (2008). Easy Web Service Discovery: A Query-By-Example Approach.

Science of Computer Programming , 71 (2), 144-164.

Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., & Zhang, J. (2004). Similarity Search for Web Services. En M.

A. Nascimento, M. T. {\"O}zsu, D. Kossmann, R. J. Miller, J. A. Blakeley, & K. B. Schiefer (Ed.). (págs. 372-383).

Morgan Kaufmann.

Erickson, J., & Siau, K. (2008). Web Service, Service-Oriented Computing, and Service-Oriented Architecture:

Separating Hype from Reality. Journal of Database Management , 19 (3), 42-54.

Fan, J., & Kambhampati, S. (2005). A snapshot of public Web Services. SIGMOD Record , 34 (1), 24-32.

Fenton, N., & Pfleeger, S. L. (1998). Software Metrics: A Rigorous and Practical Approach (2nd ed.). PWS

Publishing Co.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Boston, MA, USA: Addison-Wesley.

Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., & Cumby, C. (2010). A search engine for finding

highly relevant applications. (págs. 475-484). ACM Press.

Gyimothy, T., Ferenc, R., & Siket, I. (2005). Empirical Validation of Object-Oriented Metrics on Open Source

Software for Fault Prediction. IEEE Transactions on Software Engineering , 31 (10), 897-910.

Mateos, C., Crasso, M., Zunino, A., & Campo, M. (2010). Separation of Concerns in Service-Oriented Applications

Based on Pervasive Design Patterns. ACM Special Interest Group on Applied Computing (págs. 849-853). ACM.

Meirelles, P., Jr., C. S., Miranda, J., Kon, F., Terceiro, A., & Chavez, C. (2010). A Study of the Relationships

between Source Code Metrics and Attractiveness in Free Software Projects. 0, págs. 11-20. IEEE Computer

Society.

Ordiales, J. L., Mateos, C., Crasso, M., & Zunino, A. (2011). Avoiding WSDL Bad Practices in Code-First Web

Services., (págs. 1-12).

Pasley, J. (2006). Avoid XML Schema Wildcards For Web Service Interfaces. IEEE Internet Computing , 10, 72-

79.

Rusu, L., Rahayu, W., & Taniar, D. (2008). Intelligent Dynamic XML Documents Clustering. (págs. 449-456).

IEEE Computer Society.

Spinellis, D. (2005). Tool Writing: A Forgotten Art? IEEE Software , 22, 9-11.

Stigler, S. (2008). Fisher and the 5% level. Chance , 21, 12-12.

Subramanyam, R., & Krishnan, M. (2003). Empirical Analysis of CK Metrics for Object-Oriented Design

Mateos et al., Avoiding WSDL Bad Practices in Code-First Web Services, EJS 11(1) 31-48 (2012) 48

Complexity: Implications for Software Defects. IEEE Transactions on Software Engineering , 29 (4), 297-310.

Tsui, F. F., & Karam, O. (2006). Essentials of Software Engineering. Prentice Hall.

Van Engelen, R., & Gallivan, K. (2002). The gSOAP Toolkit for Web Services and Peer-to-Peer Computing

Networks. (págs. 128-135). IEEE Computer Society.

