

SADIO Electronic Journal of Informatics and

Operations Research
http://www.sadio.org.ar

vol. 10, no. 1, pp. 108-122 (2011)

Improving Product Quality and User Satisfaction through Early
Customer Feedback and Automation

Matias Cabral1 Domingo Gonzalez 1 Dan Hirsch 1

Cesar Martinez 1 Andres More 1 Victor Rosales 1

1 Intel Software Argentina - Argentina Software Development Center (ASDC).
Corrientes 161 – 2nd floor
X5000ANC, Córdoba, Argentina
e-mail: {matias.a.cabral, domingo.c.gonzalez, dan.hirsch, cesar.martinez, andres.more,
victor.h.rosales}@intel.com

Abstract

New users of cluster computing find a high entry barrier due to the daunting
complexity of deploying and managing a cluster. The Intel® Cluster Ready
program aims to lower such entry barrier by setting standards for the cluster
integration process and providing tools to simplify the deployment process. The
Intel Cluster Checker tool, a key component of the Intel Cluster Ready program, is
an automated and flexible tool that validates the cluster settings against the Intel
Cluster Ready specification, and checks the general wellness of the cluster. This
experience report shows how the product engineering team of Cluster Checker
faced the challenge of having a small team and be able to provide a cutting-edge
high-quality product in less time, maximizing resource usage through automation,
and increasing and securing early validation with key stakeholders..

Keywords: High Performance Computing, Automation,
Development Process, Agile Methodologies.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 109

1 Introduction

The Intel® Cluster Ready Program [1] aims to reduce the time-to-market and minimize the risk involved in
selecting a collection of hardware and software components for High Performance Computing environments,
providing a thoroughly tested solution stack and ensuring the interoperability of its components out-of-the-
box.

Key to this program, the Intel Cluster Checker [1] is a powerful and flexible tool for helping customers to
integrate clusters by validating the compliance of a new cluster solution with the Intel® Cluster Ready
Specification [1]. The product includes 31K lines of source code distributed in more than 120 independent test
modules, executing over +10 officially supported operating systems. Although Independent Product
Validation is done using four 4-node cluster environments over the latest Intel and third -party technologies,
the actual testing goes beyond that, covering cluster scale-outs up to 256 server nodes; heterogeneous server
platform combinations; and pre-release hardware and software component compatibility (both, for Intel and
third parties) to support the time to market launch of Intel's new technology.
Furthermore, as the Intel Cluster Checker is integrated by the program partners (Original Equipment
Manufacturers, Platform Integrators and channel members) in their cluster manufacturing processes, there is
a need for the tool engineering team to efficiently and timely address partner requirements that are critical for
their business continuity and the launch of their own Intel Cluster Ready certified products.

Agile Methodologies require a fast response to all issues like a sudden change in requirements, bug fixing, or
implementing new features. This allows the team to continuously deliver a working product with the certainty
that it is what the user wants and in a short period of time (usually no more than 3 weeks). But regardless of
the methodology used, all quality goals must always be reached. This experience report shows how the Intel
Cluster Checker engineering team, located at Intel's Argentina Software Development Center, has
implemented reliable, efficient and high quality processes and infrastructures, coping with the complexity of
the validation space and the critical time to market business requirements, through the integration of Agile
development methodologies with a CMMi process initiative, plus the end-to-end automation support of the
development process.

2 Background

2.1 Intel Cluster Ready Program

In recent years, cluster computing has emerged as a scientific tool to obtain additional computational power in
the commercial (manufacturing and services), health, finance, and educational areas [2]. Furthermore, as
Figure 1 shows, the cluster market is growing faster than the non-cluster servers market [5]. It is estimated
that the High Performance Computing (HPC) server market revenue will grow past $12 billion in 2013, from
$9 billion in 2009, with clusters making up for more than 70% of this amount [6].

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 110

Figure 1. Cluster vs. Non-Cluster Server Market Penetration

The comparatively low cost and scalability of clusters is pushing more companies to enter in the cluster's
arena. However, the capability of each cluster involves an exchange of hardware costs for software costs [7].
A complex combination of software is required to configure and maintain multiple distributed machines that
make a single clustered system. Therefore, new users are forced to do extensive research to establish
hardware and software requirements, build the cluster, install the required software, and then tune the
components to obtain a healthy system with a competitive performance. Given the complexity of building a
cluster, different users often develop ad-hoc procedures for automated cluster deployment and management.
The associated lack of standards have kept the cluster ownership costs high as custom procedures should be
developed from scratch on virtually every installation. To ameliorate this situation, some of the "best
practices" techniques for cluster deployment were integrated in easy-to-use toolkits called provisioning
systems [7,8]. However, the solution offered by provisioning systems only considers certain software stacks,
hopefully over a small set of hardware platforms.

In order to overcome the comp lexity of this environment, Intel developed the Intel Cluster Ready Program [1]
to simplify the design, building, and deployment of clusters.

With more than 100 partners around the world, the Intel® Cluster Ready Program is a collaborative effort
between Intel, Original Equipment Manufacturers (OEMs), Platform Integrators (PIs), channel members, and
Independent Software Vendors (ISVs), that signup as Intel Cluster Ready partners, in order to establish an
architecture and specification to be used as a commo n basis for performing clusters. Cluster solutions that
comply with the Intel Cluster Ready Specification [1] are certified by Certification Authorities of the Intel
Cluster Ready program. Also applications produced by ISVs can be registered as compliant with the Intel
Cluster Ready specification.

The main idea behind the Intel Cluster Ready certification process it that applications written to run on one
certified cluster can run on any certified cluster with a high confidence. Conversely, a certified cluster will be
able to run any registered application without requiring major efforts.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 111

To complete the certification of a cluster solution, the Intel Cluster Ready partner (OEMs, PIs, channels) may
follow the steps indicated by a Cluster Reference Implementation (a.k.a. recipe) [1]. These recipes are the
product of a cluster engineering process that will allow the Intel Cluster Ready partner to manufacture
compliant clusters. The next step in the process is to use the Intel Cluster Checker Tool to automatically
verify the cluster health and compliance with the Intel Cluster Ready Specification. The tool used for the
automatic verification is the Intel Cluster Checker, which is introduced in the next section.

2.1 Intel Cluster Checker Tool

The Intel Cluster Checker [1] is a software tool that helps the verification of cluster compliance with respect
to the Intel Cluster Ready Specification. It can verify the cluster at the node and cluster-wide levels, ensuring
that cluster nodes are uniformly and optimally configured. The tool is customizable and extensible, letting
users develop their own tests by specifying commands to be executed and their expected results.
It is a Perl program with over 30K lines of code that is distributed in binary form. It has over 120 different
tests, with an average of 6 configuration items for each one of them. It has almost 300 pages of documentation
that are distributed in PDF, HTML and Man-Page format (that is a lmost 1000 pages).

In a nutshell, it consists of an engine that loops over a set of test modules (see Figure 2). Prior to entering the
loop, the engine must figure out which test modules to run, which nodes to check, and setup the infrastructure
to process the test modules.

Figure 2a. Test Modules Execution flow.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 112

Figure 2b. Cluster Checker process workflow.

Figure 2c. Test module configuration and result examples.

The modules themselves do not execute on the cluster nodes; a module runs one or more commands on a
node. So, there is no needed for any specific support at each node of the cluster. A module has two functional
steps: it first collects information and then determines if the information is correct. Correct may mean
matching a certain value, uniformity compared to other values, or something else. Thus, modules must have a
gather step where it collects information and a test step where it determines if that information is correct.

As shown in Figure 3, there are four different classes of modules to handle special cases of this two-step
gather/test p rocess, but all classes respect the aforementioned structure.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 113

Figure 3. Classes of Modules.

There are two types of checking: the wellness checking of a cluster and the compliance mode with respect to
the Intel Cluster Ready Specification.

Wellness checking verifies the functional and non-functional characteristics of a cluster, like performance or
disk space. It can be used for on demand validation of the cluster. This feature of Intel Cluster Checker helps
the maintenance of the cluster health providing diagnostic data to identify the issue.

Compliance checking is used during the Cluster Certification process of the Intel Cluster Ready Program. The
goal of applying this checking is to determine if the cluster configuration follows the Intel Cluster Ready
Specification.

3 Agile Methodologies and Automation support

As we have mentioned in the introduction, although Independent Product Validation of the Intel Cluster
Checker is done using the four top 4-node cluster environments, the actual testing goes beyond that, covering
cluster scale-outs up to 256 server nodes; heterogeneous server platform combinations; and pre-released
hardware and software component compatibility (both, Intel and third party) to support the time to market
launch of Intel's new technology. Also, as the Intel Cluster Checker is integrated by the program partners in
their cluster manufacturing processes, there is a need for the development engineering team to efficiently and
timely address partner requirements that are critical for their business continuity and the launch of their own
Intel Cluster Ready certified products.

The product is made up of 31K lines of source code distributed in more than 120 independent test modules,
executing over +10 officially supported operating systems. Currently, the product is being developed at the
Argentina Software Development Center (ASDC) in Córdoba. The engineering team consists of 2 developers,
1 tester and 1 independent product validation engineer.

The main challenge faced by the reduced engineering team has not been only to provide a cutting-edge high-
quality product in less time, while maximizing resource usage, but also to increase and secure early validation
with key stakeholders. Moreover, last minute requirements requested by Intel Cluster Ready partners should
be included based on their feedback.

Cluster Checker has an extremely wide range of requirements. The tool has to successfully execute on
multiple hardware platforms, software stacks and over many OSs (Operative Systems). So me of these
requirements grow in time by their nature, such as supporting other Intel tools (compilers, math kernel
libraries, etc), supporting new OSs versions and distributions, and others. And all these should include
backward and forward compatibility, including support of older versions of the ICR specification. Several
non-functional requirements also need to be met, like execution time reduction critical to allow cluster
integrators and manufactures to include Cluster Checker as part of their manufacturing processes. A second
related requirement is scalability which manages execution time explosion while allowing expansion over
clusters of bigger size (i.e. thousand of nodes). So, even without adding any new feature an enormous amount

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 114

of effort is required to fulfill these persistent requirements. Summing up, without concise processes, smart
automation and well established policies , fulfilling the requirements, maintaining and improving the tool
simply cannot be achieved by a small team.

To achieve these goals, the engineering team has been driving process and infrastructure improvements over
the last year and a half, involving three releases of the tool. One of the main focuses of these improvements
has been to provide automation support throughout the different tasks they performed.

3.1 Infrastructure

On the infrastructure side, the project has included an aggressive effort for building an automated
development and testing infrastructure (Figure 4), avoiding recurrent effort on repetitive manual tests, while
supporting the required software and hardware coverage against a small time to market window.

Figure 4. Development, Testing and Validation Infrastructure.

The engineering infrastructure includes 2 servers (based on different platforms) fo r development, 4 clusters
dedicated to testing (15 nodes on 4 different server platforms), and 1 server with 18 virtualized GNU/Linux
distributions for automatic operating system testing coverage. For product validation the team uses, on
demand, a laboratory of more than 300 servers that allows up to 32-nodes cluster scale-outs over 4 different
multi-core and mu lti-processor Intel platforms; and remote access for scale-out validation up to 256 nodes.
This infrastructure allows covering a wide range of the key hardware and software stacks for High
Performance Computing.

The development and testing teams rely on several tightly coupled tools and a flawless working environment
for its day-to-day work. All issues are tracked in a dedicated tool with the information needed for their
planning and solution. All configuration items are properly stored under a SCM (Software Configuration
Management Plan) to ensure a rollback capability so all reported issues can be traced back to the source, and
to have a tagging mechanism in place. To further ensure complete traceability and isolation, each issue
implemented is developed in a dedicated branch with a unique identifier that matches the original requirement

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 115

and keeps the trunk as stable as possible. All issues have a source code branch and a unit tests branch, so the
unit tests can also be tracked.

Once the development of an issue has finished, a script is used to ensure that all code is up to date triggering a
regression framework with over 500 test cases and a static code analyzer. The script makes sure that the
branch is up-to-date and it generates a detailed report that is sent to the testing team. The testing team will not
accept the fix unless the quality of the new code is greater or equal than the previous one, at least one unit test
has been added to the framework, a code peer review was performed, and the regression framework has
passed 100% of the tests. This testing cycle is performed over the issue branch and once it is finished, a
testing report is sent back to the developer, who then merges the branch back into the trunk. To cover the
hardware requirements, the quality team has 8 dedicated clusters with different software stacks recreating end
users’ environments. To increase productivity a script is used by the quality team to execute all test cases in
parallel over all clusters.

When the developers merge back their changes to the trunk, an automated building tool triggers the unit test
framework against the trunk making sure that the merging did not break anything and assuring a stable code.
If a unit test fails an email report is sent to everyone in the team, and it is the developer’s responsibility to fix
this issue. A nightly build plan gets executed which runs the regression framework over the trunk and builds
the product leaving it ready for distribution. Then, the regression framework is ran over the binary package
generated in the previous step and, if the build succeeds, a new build plan is executed exercising the binary
package in parallel over 18 virtual machines with all supported operating systems, ensuring binary
compatibility.

This plan triggers a script in a dedicated environment specially developed to ensure the binary compatibility
of the tool across all supported OSs. The Binary Compatibility Environment consists on a set of VMs (Virtual
Machines), each with a different supported OS (currently 18 OSs according with the approved support plan),
and a dedicated VM acting as a proxy node for all other VMs. When the binary plan starts, the script turns on
all VMs. As VMs have non-persistent disks, they always appear as a fresh installation of the OSs. From the
proxy VM, the binary package, created in the nightly build, is copied to all other VMs and Cluster Checker is
executed with a minimal workload analyzing the execution results for any failure. If a failure is found a report
with all the details is sent to the team. To ensure a repeatable environment, all the VMs are safely stored
under EC (Engineering Computing) infrastructure. At this point the nightly package is ready to go to Product
Validation.

3.2 Processes

Based on the infrastructure improvement and automation, the key component that allowed the team to achieve
their goals has been the changes applied to the Product Development Process through the implementation of
the Capability Maturity Model® Integration (CMMi) [3] - Level 2 and Level 3 Best Practices (as part of a
certification strategy at the ASDC center) combined with the adoption of an agile development methodology
[4], concretely the iterative incremental development process called SCRUM [9] (see Figure 5). This
revolutionary change, combining the CMMi process improvement model and an Agile development
methodology, was fully implemented for the last three releases (versions 1.3, 1.4 and 1.5) of the Cluster
Checker Tool, delivering a working and validated product after each development sprint.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 116

Figure 5. Development Methodology.

The different engineering areas of the team, that is, Software Development, Testing, Product Validation and
Product Packaging, worked together to improve product quality through the implementation of an innovative
process to increase automatic testing coverage while keeping track of all documents/source code revisions.
All of these enhancements were successfully validated by internal and external audits performed by the
Process and Quality Services area of ASDC and aligned with the CMMi process initiative in place.

The Product Development Process to build the product was completely migrated from a traditional Waterfall
to a SCRUM agile software development process. Moreover, it is worth noticing that the release approval
process followed the standard Intel approval product lifecycle for a release. As a first step to integrate these
processes, the Project Manager in charge was certified as SCRUM MASTER to be able to oversee all the
procedure. The process started when the product version was approved at Implementation Plan Approval
phase by the Software Product Planning Committee of the Developer Product Division of Intel (including the
complete Product Requirements Backlog prioritized).

The agile process framework, defined by the software engineers, established a set of Development Sprints
where the Change Control Board committee defined which features are going to be delivered at the end of
each sprint. Once a sprint achieved all the pre-established quality targets, the product was distributed to key
stakeholders with the purpose of getting early feedback on the features committed for that phase. Each Sprint
cycle is executed every two and a half weeks in order to keep the key stakeholders warm and involved in the
progress of the tool. Additionally, a closure meeting is held after each sprint by the Change Control Board
committee to check status, impleme nt any requirement changes and define next sprint planning. Due to the
very aggressive schedule and changing requirements, the process requires a high automation level through all
the development, testing and product validation phases. Therefore, the set of new test cases and regression test
cases have been continuously integrated into an automatic Quality Assurance framework which is executed
against each new change, validating the pass/fail rate criteria established at the beginning of the development
phase. This setting allows the engineering team to have a constant and hard tracking on the product
development behavior; maintaining an always working product state.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 117

As scalability is a critical requirement for the tool, every sprint closure a remote cluster is used to execute
Cluster Checker over an increasing number of nodes up to 128 where all execution times and results are
gathered and added into a database for further analysis.

Securing a tight alignment with the rest of Intel tools, every release, a recurrent issue is scheduled for
updating all distributed binaries compiling them with the latest versions of the tools. Furthermore, all these
binaries are tested in the Binary Compatibility Environment mentioned in the previous section. Another
recurrent issue is to add new VMs to the Binary Compatibility Environment if the OSs support matrix
changes, or if a new version of the already supported ones is released (this can be new service packs, or
simply minor updates).

A light Product Validation is performed every sprint closure that ensure a proper integration of all issues.
Also each sprint release is sent to the Technical Consultant Engineers that are the point of contact with the
end users to test the releases or drive pilots with selected end users. In this way early feedback is obtained and
it is introduced in the next sprint planning.

Finally the RTM (Ready to Manufacture) package of the last sprint goes to a full Product Validation cycle
that guarantees users requirements were fulfill.

4 Results and Conclusions

Early customer feedback and testing automation allowed Intel Cluster Checker last three versions (versions
1.3, 1.4 and 1.5) to be released achieving sustained higher quality and in a time frame shorter than previous
versions. As a result of the process started in Cluster Checker 1.3, the product had key stakeholders validating
not only all the requested features but extra features additional to the originally planned ones (Figure 6).
In cold numbers, the process transition showed an initial 12.5% effort reduction, a 400% improvement in
backlog resolution, and 200% on new features included in the release cycle (Figure 6).

Following a quality-oriented approach, the size of the automated test case framework was increased from 80
to 500 test cases which were enforced after each code change, resulting in a constant 80% global coverage in
the current release version 1.5 (Figure 7), presented through a dynamic drill-down web report which identifies
gaps and directs next steps (Figure 8). As part of this, to ensure proper code coverage, the team enforced a
policy that the developers must ensure a minimum of 80% of code coverage by creating unit tests for each
issue implemented. Furthermore, static source code analysis over both source code and documentation were
integrated to guarantee that all known coding pitfalls are avoided and also documentation formatting is
homogeneous. The great level of automation involved in every step of the development cycle allows the team
to focus on the implementation and further improvements of the tool increasing its productivity.

Automation focus and moving from a typical waterfall development process to an agile one, improved the
accuracy of the implementation with respect of the requirements. A 2.8x increase of code coverage and a 6.2x
increase in the number of unit tests, the whole automated environment and all the processes in place made a
3x improvement in issues solved by week, 4.2x improvements in codes quality.

As the final result, the product team was able to release, in less time than before, higher quality versions,
validating with key stakeholders on the progress and the implementation maturity for all the requested
features and allowing even extra features outside the planned ones to be included. It is worth mentioning the
integration of the agile methodology within the CMMi initiative at ASDC, resulting in Cluster Checker being
one of the projects certified for both Level 2 and Level 3 action plans (details of this are beyond the scope of
this paper). Also, very positive impact with excellent feedback was received from internal/external key
stakeholders for the well-defined product development process. The practices and methodologies established
in this process have been shared as Best Known Methods with other teams at Intel, where the added value of
this experience has been the increased quality and customer satisfaction without impacting on available
project resources. Smart automation and concise, but flexible, processes is a must-have for small teams and
projects with a wide range of requirements. Assuring a continuous quality level through the entire

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 118

development process through automation guarantees a reliable and healthy product and makes the project
reach an important level of stability.

Intel(R) Cluster Checker Issues solved per week

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Product Version

1.1875 1.785714286 3.586206897 4.416666667

1.2 1.3 1.4 1.5

Figure 6a. Improvements achieved after process transition.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 119

Figure 6b. Improvements achieved after process transition.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 120

Lines of Coverage

0

5000

10000

15000

20000

25000

30000

Product Version

S
L

O
C

Lines Covered 6588.533 17505.44 21688.34 24223.84

Lines Examined 9319 23656 26842 29980

Total SLOC 23250 25122 27183 30306

1.2 1.3 1.4 1.5

Figure 7. Growth of test cases, global coverage and build evolution.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 121

Figure 8. Assisted coverage extraction and gaps identification.

Cabral et al., Improving Product Quality and User Satisfaction t hrough Early Customer Feedback , EJS 10(1) 108-122 (2011) 122

References

1. http://www.intel.com/go/cluster

2. http://www.top500.org

3. http://sas.sei.cmu.edu/pars/

4. Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. In Advances in Computers. 62, 2-67
(2004).

5. Joseph, E.: HPC cluster market trends. Tech. rep., IDC Corp. (May 2007).

6. Joseph, E., Conway, S., Walsh, R., Wu, J., Lee, D.: Worldwide technical computing server 2008 top 10
predictions. Tech. rep., IDC Corp. (January 2008).

7. Mugler, J., Naughton, T., Scott, S., Barrett, B., Lumsdaine, A., Squyres, J., des Ligneris, B., Giraldeau, F.,
Leangsuksun, C.: OSCAR clusters. In: Linux Symposium (June 2003).

8. Papadopoulos, P., Katz, M., Bruno, G.: NPACI rocks: Tools and techniques for easily deploying
manageable linux clusters. In Concurrence and Computation: Practice and Experience. 15(7,8), 707-725
(2003).

9. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004).

