
Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 24

SADIO Electronic Journal of Informatics and

Operations Research
http://www.dc.uba.ar/sadio/ejs

vol. 9, no. 1, pp. 24-48 (2010)

An MDA Approach to Business Process Model Transformations

Mauro Argañaraz Ana Funes Aristides Dasso

Universidad Nacional de San Luis,
Ejército de los Andes 950,
5700 San Luis,
Argentina,
e-mail: arganaraz@hotmail.com, {afunes, arisdas}@unsl.edu.ar

Abstract

We present in this work an MDA approach for the definition of transformations
for business process models. These transformations are based on the use of two
platform independent workflow universal languages –UML 2.0 Activity Diagrams
and BPMN– and a platform specific language, the XPDL language. The first two
languages are used in the definition of a horizontal transformation, while BPMN
and XPDL are used in the definition of a vertical transformation. Although there
are several options for a model transformation language, we have adhered to one
of the principles of MDA, namely the use of standards, therefore adopting the
QVT language, which is the transformation language proposed by the OMG. We
also show, in this work, a practical case of an application of the transformations
proposed here.

Keywords: MDA, BPMN, XPDL, UML Activity Diagrams,
QVT.

1 Introduction

Since some years ago, different kind of IT market products have been supporting features of workflow
functionality, however from the early 90s workflow has received increasing recognition being used more and
more for business in a number of different organizations. Additionally, with the recent coming of business
process management systems, we have seen a radical change in the place and the role played by workflow in
an organization.

New design features have been added as workflow technology progressed, but at the same time the main
characteristic that distinguishes workflow from other systems, i.e. supporting people in business activities, is
still valid. Aiming to achieve a standard and interoperability among different in-development or currently-in-
the-market workflow management systems (WfMS), the Workflow Management Coalition (WfMC)
published the Workflow Reference Model (WfRM) in 1995.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 25

At present time, there are a number of organizations (W3C, WfMC, OMG, OASIS, AIM, etc.) and standards
(UML [Booch et al., 2005], [OMG, 2005]; BPMN [OMG, 2006], [Owen and Raj, 2003]; BPEL [OASIS,
2007]; WSCL [W3C, 2002a]; WSCI [W3C, 2002b]; XPDL [Workflow Management Coalition, 2005]) that
have normalized some of workflow features. They have also contributed with different design notations. Two
of these standards –the UML Activity Diagrams (UML AD) and the Business Process Modeling Notation
(BPMN)– have provided us with easy to read graphical notations for the modeling of workflow process. Some
authors state that UML AD and BPMN are similar [White, 2004] and there is an initiative of the OMG
[Watson, 2005] (see http://bmi.omg.org/) for the integration of UML AD and BPMN under a unified
metamodel. On the other hand, the WfMC has proposed XPDL (XML Process Definition Language) for the
area of business process definition. XPDL 2.0 specifies a standard file format for the persistence of BPMN
diagrams and the interchange of process definitions. This format is based in the WfMC metamodel, which
provides a framework for the definition and interchange of process definitions for a number of products,
including workflow engines, simulators, Business Process Analysis (BPA) tools, report and activity
monitoring tools [Shapiro, 2006].

Some years ago, the lack of a standard notation for business process modeling caused a technical separation
between the business process models developed by business analysts and the process representations required
by the systems designed to implement and execute those processes. Therefore, it was necessary to manually
translate the original business process models to execution models. These translations were subject to
misinterpretations and they made difficult the analysis of process evolution and performance by process
owners.

While the organizations were discovering the advantages of modeling their processes, during the last years the
use of this kind of models went from a luxury article to a daily use artifact. At the same time, many
organizations having large numbers of models describing their business could see how these models changed
with time (for example, the interoperability B2B arrived with new inventions in communications and new
business process) making necessary to keep their models up-to-date and synchronize or translate them to a
contemporary modeling language with an executable counterpart. Having these needs in mind, we believe that
model transformation techniques can improve the flexibility of business process, reduce the time between
process modeling and its transformation to executable code, and decrease the number of people involved in
the design and implementation of the organization business processes.

In addition, Model Driven Engineering (MDE) appears as a good way to transfer changes in business
processes to those systems implementing such processes. So, using an MDE approach, like Model Driven
Architecture (MDA) [OMG, 2003b], the interaction between business people and software engineers can be
improved.

Having these considerations in mind, we present in this work a definition of two transformations for business
process models making use of MDA with an elaborationist approach. UML 2.0 AD and BPMN, appearing in
the role of workflow design universal languages in the definition of an horizontal transformation, allow the
definition of business process models, which from a MDA perspective correspond to Platform Independent
Models (PIM)6. In the role of specific platform language, we have used XPDL to define a vertical
transformation from a BPMN PIM to an XPDL PSM (Platform Specific Model). Although a version of BPEL
could be a platform specific language suitable for workflow development, given that many tools support
transformations from BPMN to BPEL, these tools are not yet flexible enough. In addition, the transformation
from BPMN to BPEL defined in the BPMN standard [OMG, 2006] is given in an informal way. There are
also some proposals for a direct transformation from UML AD to a BPEL dialect (see [Beck et al., 2005],
[Bordbar and Staikopoulos, 2004], [Bézivin et al., 2004], [Gronmo and Jaeger, 2005], [Gardner, 2004]).

6 Although some authors ([García et al., 2007]; [Rodríguez et al., 2007]) establish that a business model in an
MDA context is a Computation Independent Model (CIM); others ([Kalnins and Vitolins, 2006]; [Debnath et
al., 2007]) qualify any process model as a PIM. Following the later authors, in this work we consider the
particular case of a business process model as a PIM.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 26

However, given that the version 2.0 of XPDL released on October 2005 contains extensions allowing the
representation of all BPMN essential features, we decided in this work to make use of XPDL as a platform
specific language. Regarding to the transformation language, there are several options such as ATL [INRIA,
2008] or MOLA [MOLA, 2008], both capable of providing an adequate solution for the definition of 1:1 and
1:N mappings. However, we have followed one of the principles of MDA, that is the use of standards, and we
have opted for QVT (Query/View/Transformation) (see [OMG, 2007], [Kurtev, 2008]) −the standard model
transformation language proposed by the OMG− as a model transformation language.

The rest of this work is organized as follows. Related work is presented in Section 2. In Section 3, we recall
some concepts present in model transformations and MDA that are used in this work. In Section 4, we give a
perspective of business process modeling in relation to the notations used in our transformations. In Section 5
we describe both transformations from an MDA perspective and we present the QVT transformation rules. In
order to validate our proposal, we present in Section 6 an application of our MDA approach to a real practical
case. Finally, in Section 7 we discuss some conclusions and future work.

2 Related Work

There are several works related to the use of transformations for business process modeling. Gardner et al.
(2003) introduce a UML 1.4 profile for automated business processes that allows BPEL processes being
modeled using a UML tool as well as permitting these models to be transformed to BPEL from the UML
profile so as to automatically generate web services artifacts (BPEL, WSDL, XSD). The output of this process
is a BPEL document that can be executed in a BPEL engine. The profile only supports those concepts
common to both languages. Mappings are presented informally.

A different approach is taken in [Guelfi et al, 2006]. They make use of a set of formal translation rules for the
transformation of UML 1.5 Activity Diagrams to XPDL 1.0 specifications. The transformation is done in two
steps; the first is the transformation itself while the second step consists of an optimization algorithm over the
XPDL 1.0 specification.

Other works analyze the possibility of transforming directly UML 2.0 AD to BPEL following an MDA
approach. For example, Bordbar and Staikopoulos (2004) present the transformation of a UML 2.0 AD to
BPEL where web service behavior features are developed using a MOF metamodel for BPEL 1.1 and where
OCL is employed as model transformation language. Bézivin et al. (2004) use the ATL language to specify
the transformation from a UML 2.0 AD (PIM) to BPEL and JAVA (PSM) languages.

Some other proposals consider the translating of UML 2.0 AD to XPDL. Gallina et al. (2006) give an
informal transformation from UML 2.0 AD to XPDL 1.0 centred on the use of transactions and the exceptions
mechanisms. Others such as Lohmann et al. (2007) propose a model directed approach to transform a
workflow model –developed with UML 2.0 AD– into a BPEL 1.1 or XPDL 2.0 description using a
technology based on Triple Graph Grammars. This allows the description of the structural relations between
the different elements using declarative and graphic rules that can be applied bidirectionally.

On the other hand several authors have adopted the new notation, BPMN. In [White, 2005] a BPMN–BPEL
transformation is described informally. Some tools already implement the BPMN to BPEL transformation
although in a superficial manner (see [BPMI, 2008]); moreover the details are proprietary. Filograna et al.,
(2007), introduce an open source tool based on the web that gives the user the possibility of modelling
business processes using BPMN 1.0. Also the tool traduces a BPMN diagram to XPDL 2.0. The mapping
description is given informally. Mora et al. (2007) present a translation from BPMN a XPDL 2.0 under a
MDA approach using the ATL language.

We can also find in the literature several works on model transformations but they are not associated to
business processes. For example in [Debnath et al., 2007], the automation of software development processes
specified with SPEM is proposed by a transformation into the WfMC workflow metamodel using the QVT
Relations language. García et al. (2007) give a number of rules defined in QVT that implement heuristics for

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 27

the derivation of Analysis classes from secure process models. These models are constructed using UML 2.0
AD and BPMN 1.0 which are extended to capture a set of security requisites specified by the business expert.

Rodríguez et al. (2007) define a set of rules using QVT that allow getting use cases from a BPMN business
process model that considers security requirements. In a similar work, Rodríguez et al. (2008) propose using
an MDA approach to transform BPMN models into UML AD and from them obtain Analysis classes and use
cases.

Closer to our proposal, Kalnins et al. (2006) describe a UML 2.0 AD to BPMN 1.0 transformation that
supports characteristics of workflow using an ad-hoc UML profile. The transformation is defined using the
graphic language MOLA (Model Transformation Language).

 3 Model Transformations in an MDA context

The concept of model transformation is central to Model Driven Engineering (MDE). A model transformation
takes as input a model conforming to a given metamodel and produces as output another model that conforms
to a given metamodel. More precisely, following Kleppe et al. (2003) a transformation is the automatic
generation of a target model from a given source model according to a transformation definition.

A transformation definition is a set of rules that, all together, describe how a model, expressed in a source
language, can be mapped into a model in a target language. A transformation rule is a description of how one
or more building blocks of the input language can be mapped into one or more elements of the output
language.

Depending on the languages used for the source and target models, we can talk of endogenous or exogenous
transformations. When the target and source metamodels are the same, the transformation is called
endogenous; if they are different the transformation is called exogenous (also referred as translation).

We can also talk of vertical transformations versus horizontal transformations. A transformation is horizontal
when both the target and the source models are specified in the same abstraction level; in a vertical
transformation, the models are expressed in different abstraction levels. A taxonomy on model
transformations can be found in [Mens et al., 2006].

The OMG consortium has developed the Model Driven Architecture (MDA) proposal as an implementation
for MDE. MDA was born with the idea of separating the system specification from its operational logic,
namely separating those details defining how the system uses the capabilities from the technologic platform
where it is implemented. Therefore, the developer must only be concern with the business logic while the
corresponding specific tools are in charge of generating the code for the implementation platforms.

With these ideas in mind, the main goals of MDA are the portability, the interoperability, and the reusability,
which are achieved through an architectural separation. The platform independency concept appears
frequently in MDA. This is the model property of being independent from the features of any kind of
technological platform.

By means of the application of this paradigm, the life cycle of a software system can be completely covered,
going from the requirement acquisition to the system maintenance, through the source code generation. In this
sense, MDA proposes in the first place the definition of computation independent models (CIM), then the
generation of platform independent models (PIM) from the formers, which in turn are transformed into
platform specific models (PSM) to finally get the executable code. Each model can be expressed in a different
language, and the transformations, CIM-PIM, PIM-PSM, and PSM-code, require transformation tools. These
tools receive as input not only a source model but also a transformation definition, which establishes the
mapping between the source model language (source metamodel) and the target model language (target
metamodel). Note that, in practice, things can be much more complex given that gaps between models can

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 28

exist making a straightforward transformation impossible. In such cases, there is the possibility of having
several horizontal transformations in a same abstraction layer. For example, a PIM could be transformed
several times in PIMs that are more detailed.

Figure 1. MOF Metamodels and models.

Automation and the use of a modeling language together with the adoption of standards form the three pillars
on which MDA is based. OMG has defined a set of standards to support its proposal. The standard language
proposed by the OMG for the definition of model transformations is QVT, which is based on the OCL (Object
Constraint Language) [OMG, 2004]. Using QVT makes possible the definition of generic transformations
between metamodels; in this way any instance of a given input metamodel can be transformed into an
instance of a given output metamodel. This standard is based on MOF (Meta Object Facility) [OMG, 2003a]
and it establishes a language for model transformations (T), a language for model queries (Q) and a language
for definitions and generations of views (V) allowing the model analysis from different perspectives.

The use of the MOF standard and the metamodel concept are central in MDA. A metamodel is a model that
describes models. Therefore, for example any UML model can be considered an instance of the UML
metamodel, which describes all the elements used to create instances of UML models. The definition of
metamodels as instances of the MOF meta-metamodel is a crucial point in MDA. The MOF technology
describes an architecture based on four levels of abstraction called M0, M1, M2, and M3 as it is shown in
Figure 1.

Level M0 is the instance level and it models the real system, where its elements are the concrete instances that
form part of the system. An element belonging to this level is for example the client Juan Pérez. Level M1 is
the level of the system model. Elements in level M1 are models of concrete systems. In this level, for

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 29

example, we can found the definition of the concept “Client”. Level M2 is the level of the model of the model
(the metamodel). Elements in level M2 are modeling languages. Level M2 defines the elements that can be
used to define a model of level M1. Concepts belonging to this level are, for example, the concept of class,
attribute, etc. Finally, level M3 corresponds to the model of the metamodel (the meta-metamodel), where the
elements used for the definition of diverse modeling languages of level M2 are defined. An element belonging
to this level is, for instance, the classifier, while the concept of class in UML defined in level M2 is an
instance of the classifier. Fundamentals of MDA and the role of software model transformations for this
technology can be found in [Kuznetsov, 2007].

According to McNeile (2003) there are two different interpretations to put MDA into practice. These two
different schools of thinking have been named elaborationist and translationist. In this work, we have
adopted the elaborationist approach. Here, models of the application are gradually built by going from a PIM
to a PSM and from the later to the code. Once the PIM has been created, a tool can generate a skeleton of the
PSM. This skeleton can be “elaborated” by the developer by adding more information or details. In the same
way, the developer can also “elaborate” the final code generated by a tool from the PSM. Because of this
process, the lower level models can be unsynchronized with those in the upper levels. Due to this problem,
modern tools generally have the capability of regenerating high-level models from those of lower level of
abstraction. The capability of refining models, modifying and synchronizing with the lower levels is known as
Round-trip Engineering.

When adopting this approach, the developer must understand the generated artifacts (PSM and code);
otherwise, the modification (elaboration) could not be possible. The elaborationist approach represents the
main trend in MDA.

4 Business Process Modeling with UML AD and BPMN

Modeling and specification of business process workflow is a research area that has been studied for more
than one decade. At present, it is still a research topic in the academic, industrial and commercial fields.
Several proposals for the modeling of workflow processes have been developed. Some of them based on Petri
nets extensions [Garrido, 2005], some on process algebra [Baeten, 2004] or on UML [Booch et al., 2005],
among others. In spite of this large quantity of modeling proposals, there is no standard graphical
methodology.

On the one hand, UML AD is an attractive notation for the definition of business process workflows,
especially due to the popularity of UML. The usefulness of UML AD for the definition of workflows has been
confirmed by several authors ([White, 2004]; [Bordbar and Staikopoulos, 2004]; [Bézivin et al. ,2004];
[Gronmo and Jaeger, 2005]; [Russel et al. 2006]). UML AD is also used for the definition of business
processes given that they provide a precise definition of the domain model as well as of software interfaces,
including Web services. However, at the same time several drawbacks have been observed from an analysis
of workflow patterns ([Russel et al., 2005]; [White, 2004]). In this analysis a list of patterns mainly inspired
by case studies were selected in order to determine which ones can be easily supported by a given notation.

On the other hand, a recognized graphical language −that was born for workflow definitions− in the business
processes world is BPMN. BPMN benefits users as did UML standardizing modeling activity in Software
Engineering. It also provides a certain support for tools (see
http://www.bpmn.org/BPMN_Supporters.htm#current) and while UML proposes an object oriented approach
for the modeling of applications, BPMN considers a process-oriented approach for the modeling of systems.
BPMN is focused on business processes, while UML emphasizes the design of software artifacts. In the
context of this work, let us note that according to Eloranta et al. (2006), a transformation from one notation to
the other is possible. This is particularly so due to the similarity in the expressiveness for the modeling of
workflows of both notations.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 30

Among the five interfaces identified by the WfMC as part of its standardization process, we can find Interface
1. Interface 1 supports the definition of processes and the interchange of models (import and export
operations). Part of the standardization process carried out by the WfMC in this area has resulted in the
proposal of XPDL (XML Process Definition Language) as the interchange format for business process
definitions [Workflow Management Coalition, 2005]. Although BPMN and XPDL are intended for workflow
modeling, they do it from different perspectives. While BPMN provides a graphical notation that makes easier
the understanding and the communication among several users, XPDL gives us a file in a XML format that
can be used for the interchange of business processes between different tools. Consequently, XPDL is the
serialization format for BPMN, and it provides us with a file format capable of supporting all the essential
features of BPMN including not only the executable properties used in run time but also the graphical
description of the diagram. In this way, a tool with the capability of drawing BPMN business processes can
save the definition of a process with absolute fidelity and a different tool can read and interpret it exactly as
the first tool produced it.

5 Business Model Transformations: From UML AD to BPMN and from BPMN to
XPDL

A business process model developed by a business analyst is not only useful in the business field itself but it
is also helpful for building process representations that are required by systems designed to implement and
execute such processes. When model translations are done manually they are subject to errors and
misinterpretations that make difficult an evolution and performance analysis of the developed processes by
the process owners.

In our proposal, we consider an approach driven by MDA models that apply an elaborationist view in order to
transfer the design of a business process from one notation to another without any loss of meaning and by
means of a minimum analyst intervention.

In this work, the MDA core process is based on two model transformations that consist in generating new
target models from a source model by following a set of rules. We have expressed these rules in the QVT
language. In this context, we have defined two main transformations: (a) a horizontal transformation that we
have called U2B, which maps a PIM UML AD to a PIM BPMN and (b) a vertical transformation called B2X
that produces a PSM XPDL from a PIM BPMN.

Given that our proposal follows an elaborationist approach, the analyst can add more detail to refine the
models resulting from any of these transformations. Such transformations can be applied by the developer
either individually or one after the other, according to his needs.

On the one hand, the horizontal transformation U2B allows the use of MDA as a bridge between the business
processes of diverse organizations using models written in different notations (in this case UML AD and
BPMN) at the same time that they keep their models in a higher degree of abstraction. On the other hand, the
vertical transformation, B2X, allows an organization to interchange and run models expressed as PSMs
XPDL, which can be obtained not only from BPMN PIMs but also from UML AD PIMs, via the
corresponding BPMN PIMs.

MDA is based on the MOF technology that determines a four-layer architecture. These four abstraction levels
in the MOF architecture are called M0, M1, M2, and M3 as shown in Figure 1. In our approach, as we can see
in Figure 2, the UML AD metamodel as well as the BPMN metamodel and the XPDL metamodel are at level
M2 and they are instances of the MOF meta-metamodel. The UML AD metamodel describes how to build
instances of activity diagrams in UML. These activity diagrams are located at level M1 in the MOF hierarchy.
In the same way, the BPMN and XPDL metamodels tell us what are the modeling elements used to build
instances of business process models in BPMN and XPDL respectively. These business processes models

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 31

correspond to models at level M1 in the pyramid. At level M0, we can find the concrete execution instances
of the real world business process modeled with the models at level M1.

Figure 2. An MDA view of the proposed transformations.

In addition, Figure 2 gives us a general view of the business process model transformations described before.
At the metamodeling level, besides the three metamodels, we find the definitions of both transformations
proposed in this work. In the following level, the one corresponding to the models, we can find the UML AD
models that are defined as instances of the upper level UML AD metamodel. Figure 2 shows the UML AD
model “Process Order” which is an instance of the UML AD metamodel. This figure also shows how, by
applying the U2B transformation on a UML AD model, we get the corresponding BPMN model, which is in
turn an instance of the upper level BPMN metamodel. Let us note that a similar reasoning can be applied for
the second transformation B2X, i.e. by applying the QVT transformation B2X we get the corresponding
model expressed in XPDL. This XPDL model is in turn an instance of the upper level XPDL metamodel.
Finally, in the lower level M0, i.e. the instance level, we can see the concrete execution instances of the
business process defined by the models of level M1. The concrete case of an XPDL execution instance could
be thought as the execution of a business process that is running in a workflow engine.

With respect to the metamodels, we decided to create three partial metamodels for UML AD, BPMN, and
XPDL. These metamodels describe only those elements that are considered in our proposal.

In Figure 3, we can see the UML 2.0 AD partial metamodel we worked with. It provides the abstract syntax
for those modeling elements in UML 2.0 AD that allow the design of business process models. This
metamodel was used together with the BPMN metamodel in the definition of the transformation U2B. Figure
4 and Figure 5 show the BPMN and XPDL metamodels, respectively, both used in the definition of the

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 32

transformation B2X. While the UML AD and the XPDL metamodels are compatible subsets of their
respective standards, in the case of BPMN since there are no existing standard for it, we built and used the
partial ad-hoc metamodel shown in Figure 4.

Activ ity

ActivityGroup ActivityEdge

Activ ityPartition

InterruptibleActiv ityRegion

ObjectNode ControlNode ExecutableNode ObjectFlow ControlFlow

Action

CallBehav iorAction

CallOperationAction

AcceptEv entAction

SendSignal

InitialNode

FinalNode

ForkNode

JoinNode

MergeNode

DecisionNode

PackageableElement Package Model

ActivityNode

+outcoming

*

+source

+incoming

*

+target

*

0..1

*
0..1

* *

*

0..1

*

0..1

Figure 3. UML 2.0 AD partial metamodel.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 33

GraphicalObject

Pool

Process

BusinessProcessDiagram

Swimlane Artifact FlowObject ConnectingObject

Lane

DataObject

Group

Annotation

Event Activity Gateway

Start

Intermediate

End

Subprocess

Task

SequenceFlow MessageFlow

Association

0..1

1..*

+out

+source

+in

+target
0..*

1..*

Figure 4. BPMN partial metamodel.

Package

Artifact

DataObject

Group

Annotation

Activ ity

Task

Route

Gateway

BlockActiv ity

Subflow

Event

Transition

Activ itySet

Application

Process

Participant

Pool

Lane

MessageFlow Association target

* 0..1

from
to*

0..1

target
sourcetarget

source

0..1

source

0..1

* 0..1

*

*

*

Figure 5. XPDL partial metamodel.

Before writing the U2B transformation rules, we established a correspondence between the UML AD
metamodel elements and the modeling elements described by the BPMN metamodel. This correspondence
was established based on an expressiveness study of the respective notations using workflow patterns ([White,

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 34

2004]; [Russel et al., 2005]). To define the B2X transformation, we established a correspondence between the
BPMN and XPDL modeling elements by also working with their respective metamodels. XPDL version 2.0
added new capabilities; among them, we can mention the extensions to represent all BPMN features. Because
of this, each essential BPMN element has its corresponding equivalent element in the XPDL specification.
However, let us note that there are some graphical elements in BPMN that cannot be translated to XPDL; at
the same time there are attributes and elements in XPDL that do not have a counterpart in BPMN.

We discovered in both transformations a lack of full correspondences between the metamodels; therefore, we
decided to provide the transformation rules with alternative elements from the target metamodel as well as a
default transformation rule. In case the analyst does not agree with the predefined option (the default rule),
according to the postulates of the elaborationist approach, he can refine the output model.

In the U2B transformation, we defined the mappings between the modeling elements following the groups of
concepts established by the WfMC for the workflow technology: processes, roles, tasks, routings, documents
and objects, exception handling and compensations. This gave raise to the definition of 69 QVT
transformation rules. On the third column of Table 1 we show only the transformation rules for the U2B
transformation. The first and second columns refer to modeling elements in the source and target notations,
respectively.

Table 1. U2B transformation rules: from UML AD to BPMN.
UML AD Element BPMN Element Transformation Rule
Accept Event Action Receive Task acceptEventAction2receiveTask
Activity Final Node Terminate End Event activityFinalNode2terminateEndEvent
Action Activity action2activity
Activity Edge Connecting Object activityEdge2connectingObject
Activity Group Embedded Subprocess activityGroup2embeddedSubprocess
Activity Group Swimlane activityGroup2swimlane
Activity Node Artifact activityNode2artifact
Activity Node Flow Object activityNode2flowObject
Activity Partition Lane activityPartition2lane
Activity Partition Pool activityPartition2pool
Activity Partition Process activityPartition2process
Call Behavior Action Independent Subprocess callBehaviorAction2independentSubprocess
Call Operation Action Service Task callOperationAction2serviceTask
Classifier Element classifier2element
Comment Text Annotation comment2textAnnotation
Control Flow Message Flow controlFlow2messageFlow
Control Flow Sequence Flow controlFlow2sequenceFlow
Decision Node Data Based Exclusive

Gateway
decisionNode2dataBasedExclusiveGateway

Expansion Region Embedded Subprocess expansionRegion2embeddedSubprocess
Flow Final Node None End Event flowFinalNode2noneEndEvent
Fork Node Inclusive Gateway forkNode2inclusiveGateway
Fork Node Parallel Gateway forkNode2parallelGateway
Initial Node None Start Event initialNode2noneStartEvent
Interruptible Activity
Region

Embedded Subprocess interruptibleActivityRegion2embeddedSubprocess

Join Node Inclusive Gateway joinNode2inclusiveGateway
Join Node Parallel Gateway joinNode2parallelGateway
Merge Node Data Based Exclusive

Gateway
mergeNode2dataBasedExclusiveGateway

Object Flow Association objectFlow2association
Object Node Data Object objectNode2dataObject
Opaque Action Script Task opaqueAction2scriptTask
Send Signal Action Send Task sendSignalAction2sendTask
UML Activity Diagram Business Process Diagram ad2bpd

In the case of the B2X transformation, we create other 37 rules, which are shown in Table 2. Like in the U2B
transformation, to give the correspondences between the elements of both notations, we follow the groups of

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 35

concepts established by the WfMC for the workflow technology. Table 2 shows the modeling elements
identified en each notation as well as the names of the respective QVT transformation rules.

Table 2. B2X transformation rules: from BPMN to XPDL.
BPMN Element XPDL Element Transformation Rule
Activity Activity activity2activity
Activity Block Activity activity2blockActivity
Artifact Artifact artifact2artifact
Association Association association2association
Business Process
Diagram

Package bpd2package

Compensation
Intermediate Event

Result Compensation compensationIntermediateEvent2resultCompensation

Data Object Data Object dataObject2dataObject
Element Element element2element
Embedded Subprocess Activity Set embeddedSubprocess2activitySet
Error End Event Result Error errorEndEvent2resultError
Error Intermediate Event Result Error errorIntermediateEvent2resultError
Event Activity event2eventActivity
Gateway Activity gateway2routeActivity
Independent Subprocess Sub Flow independentSubprocess2subFlow
Lane Lane lane2lane
Manual Task Task Manual manualTask2taskManual
Message Message Type message2messageType
Message End Event messageEndEvent2triggerResultMessage
Message Flow Message Flow messageFlow2messageFlow
Message Intermediate
Event

Trigger Result Message messageIntermediateEvent2triggerResultMessage

Message Start Event Trigger Result Message messageStartEvent2triggerResultMessage
Multi Instance Loop Loop Muli Instance multiInstanceLoop2loopMultiInstance
Participant Participant participant2participant
Pool Pool pool2pool
Process Process process2process
Receive Task Task Receive receiveTask2taskReceive
Rule Intermediate Event Trigger Rule ruleIntermediateEvent2triggerRule
Rule Start Event Trigger Rule ruleStartEvent2triggerRule
Script Task Task Script scriptTask2taskScript
Send Task Task Send sendTask2taskSend
Sequence Flow Transition sequenceFlow2transition
Service Task Task Service serviceTask2taskService
Standard Loop Loop Standard standardLoop2loopStandard
Timer Intermediate
Event

Trigger Timer timerIntermediateEvent2triggerTimer

Timer Start Event Trigger Timer timerStartEvent2triggerTimer
Transaction Transaction transaction2transaction
User Task Task User userTask2taskUser

Next, and to illustrate the rules, we give the QVT code for the rule umlad2bpmn that captures the U2B
transformation. This transformation takes a UML AD model as input and returns a BPMN output model. In
the operation main, which is the entry point to the transformation, the elements UMLActivityDiagram
are selected and the map operation ad2bpd is applied to them.

transformation umlad2bpmn(in src:umlad, out tar:bpmn);
main() {
src.objects()[UMLActivityDiagram]->map ad2bpd();
}

Each instance of UMLActivityDiagram is translated to an instance of BusinessProcessDiagram in
the operation ad2bpd. In order to carry out this, ad2bpd takes all the partitions (ActivityPartition)
that compose the activities of a UML AD model and applies the operation activityPartition2pool
on them.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 36

mapping UMLActivityDiagram::ad2bpd():BusinessProcessDiagram {

result.pool:=self.activity->group[ActivityPartition]->
map activityPartition2pool();

}

The mapping activityPartition2pool translates only the external partitions or those partitions that
are not subordinated to an element Pool. We can also observe how the lanes associated to a pool and one
instance of Process are created by means of the mappings activityPartition2lane and
activityPartition2process, respectively.

mapping ActivityPartition::activityPartition2pool():Pool
when { self.isTopParent(); }
{

result.lane:=self.activity.group[ActivityPartition]->
select(g|g.superGroup==self)->map activityPartition2lane();

result.process:=self.map activityPartition2process();
}

6 Applying the Transformations to a Business Process Model

In this section, we present an application of the proposed transformations to a business process of books on
consignment in the context of a company that sells school and literature books. The UML AD diagram shown
in Figure 6 models this process. The process determines a workflow that starts when a Publisher sends a
package of books on consignment to the bookshop and finishes with the corresponding payment, including
the accounting process.

B
oo

ks
ho

p

Stock and Prices Checking«iterativ e»

book

Ad
m

in
is

tra
tio

n
W

ar
eh

ou
se

Pu
bl

is
he

r

«e
xt

er
na

l»

Deliv er news
serv ice

monthly

Check
Deliv ery

Note

Deliv ery Note
[sent]

Record
Deliv ery

Note

Exist?

Add Book

Update
Stock

Ac
co

un
tin

g

Cost
Changed?

Update Cost
Put new

price labels

Put Price
Label

S
ho

w
ro

om

Make
statement

Send inv oice

Record
inv oice in

account

Inv oice
[sent]

Prepare
payment

Record
payment

Receiv e
payment

Deliv ery Note
[checked]

Manual task

Computer-assisted
task

id:= LA8
name:= ""

id:= LA9
name:= ""

Put in
bookcase

Withdraw
outdated copies

Return
copies to the

shelv es

Stock
[updated]

[no]
[yes]

[yes]

[no]

Figure 6. UML AD model corresponding to the process “Book Consignment”.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 37

The workflow starts with the Publisher who provides a delivery service of books on consignment known in
the circle as “News Service”. This service consists in sending to the clients a package of publications on
consignment. The publications can be new titles or existing copies sent for completing the stock. The
Publisher sends, together with the book package, a delivery note that documents the transaction.

When the package arrives to the bookshop warehouse, the person in charge of the warehouse controls each
item; then signs and stamps the document and he personally takes it to the Administration department. This
delivery note is recorded in the system by the Administration department. When the delivery note is recorded,
at the same time the stock and price of each item are updated. In case that the price of an item changes, an
additional step takes place −all the copies of this book are taken out from the shelves of the showroom and are
relabeled with the new price. At the end, all the copies are returned to the shelves.

According with the schedule agreed with the Publisher, the showroom manager prepares a statement of the
books sold and sends it to the Publisher together with the books that have not been sold for its control and
subsequent invoicing.

The Publisher receives the statement and checks it against the copies of the delivery notes that it has sent to
the bookshop previously, during the corresponding period, and its records of pendings. Then, it produces the
invoice and sends it to the client for its subsequent payment. The invoice arrives to the Administration
department where it is recorded in the Publisher account. The Accounting department prepares a check for the
payment and then it is passed to the Administration department to be recorded and paid, ending in this way
the consignment process.

B
oo

ks
ho

p

«P
oo

l»

W
ar

eh
ou

se

P
ub

lis
he

r

«P
oo

l» Deliver news
service

Delivery Note
[sent]

S
ho

w
ro

om
A

cc
ou

nt
in

g
A

dm
in

is
tr

at
io

n

Check Delivery
Note

Record
Delivery

Note

Delivery Note
[checked]

Stock and Prices Checking

Exist?

Update
Stock

Add
Book

Put in
bookcase

Cost Changed?

Update
Cost

Return
copies
to the

shelves

Make
statement

Send
invoice

Invoice
[sent]

Record
invoice in
account

Prepare
payment

Record
payment

Receive
payment

id:= LA9

id:= LA8

Put Price
Label

Withdraw
outdated

copies

Put new
price
labels

Stock
[updated]

[yes]

[no]

[no]

[yes]

Figure 7. BPMN model corresponding to the business process “Book Consignment”.

When applying the U2B transformation to the UML AD input model given in Figure 6, the corresponding
transformation rules are executed in the order shown by the sequence in Table 3. We obtain as a result a
BPMN output model similar to the one shown in Figure 7. Once the automatic transformation process has
taken place, the analyst might want to elaborate the BPMN model in order to refine it according to the
considerations pointed out in the comments of the input model. More concretely, in this example we have
replaced the task bpmn::ScriptTask “Check delivery note” by a task bpmn::ManualTask. We did

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 38

the same with the tasks “Record invoice in account” and “Record payment” which were replaced by tasks of
kind bpmn::UserTask. Finally, we changed the start event (bpmn::NoneStartEvent) by an element
bpmn::TimerStartEvent.

Table 3. Execution sequence of the U2B transformation rules for the business process “Book Consignment”.

UMLAD Element BPMN Element Transformation Rule
UML Activity Diagram Business Process Diagram ad2bpd
Activity Partition Pool activityPartition2pool
Activity Partition Lane activityPartition2lane
Activity Partition Process activityPartition2process
Initial Node None Start Event initialNode2noneStartEvent
Decision Node Data Based Exclusive

Gateway
decisionNode2dataBasedExclusiveGateway

Merge Node Data Based Exclusive
Gateway

mergeNode2dataBasedExclusiveGateway

Flow Final Node None End Event flowFinalNode2noneEndEvent
Activity Final Node Terminate End Event activityFinalNode2terminateEndEvent
Accept Event Action Receive Task acceptEventAction2receiveTask
Opaque Action Script Task opaqueAction2scriptTask
Object Node Data Object objectNode2dataObject
Expansion Region Embedded Subprocess expansionRegion2embeddedSubprocess
Object Flow Association objectFlow2association
Control Flow Sequence Flow controlFlow2sequenceFlow
Control Flow Message Flow controlFlow2messageFlow

The application of the B2X transformation to the refined BPMN model gave as a result the XPDL
specification shown in the appendix. In this case, the sequence of transformation rules given in Table 4 was
executed.

Table 4. Execution sequence of the B2X transformation rules for the business process “Book Consignment”.

BPMN Element XPDL Element Transformation Rule
Business Process
Diagram

Package bpd2package

Participant Participant participant2participant
Process Process process2process
Embedded Subprocess Activity Set embeddedSubprocess2activitySet
Activity Activity activity2activity
Manual Task Task Manual manualTask2taskManual
Script Task Task Script scriptTask2taskScript
User Task Task User userTask2taskUser
Receive Task Task Receive receiveTask2taskReceive
Multi Instance Loop Loop Muli Instance multiInstanceLoop2loopMultiInstance
Activity Block Activity activity2blockActivity
Gateway Activity gateway2routeActivity
Event Activity event2eventActivity
Timer Start Event Trigger Timer timerStartEvent2triggerTimer
Sequence Flow Transition sequenceFlow2transition
Pool Pool pool2pool
Lane Lane lane2lane
Artifact Artifact artifact2artifact
Data Object Data Object dataObject2dataObject
Association Association association2association
Message Flow Message Flow messageFlow2messageFlow

In Figure 8, we can observe a partial representation of the MOF pyramid showing the U2B and B2X
transformations at levels M1 and M2.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 39

Figure 8. Level M1 (model) and M2 (metamodel) of the MOF hierarchy for ours transformations.

Below we describe how each modeling element in the UML AD model is translated to the corresponding
XPDL modeling element via an intermediate BPMN model, by following the concepts established by the
WfMC for the workflow technology: processes, roles, transitions, tasks, routings and documents.

Processes. The transformation creates an element bpmn::Process for each partition
(umlad::ActivityPartition) that is in correspondence with an element bpmn::Pool. Therefore,
the external partition “Publisher” produces an abstract process, while the partition “Bookshop” produces an
internal process. In XPDL, we obtain two elements xpdl::Process with the previously mentioned
characteristics.

Roles. The external partition “Publisher” and the partition “Bookshop” are translated in elements
bpmn::Pool. At the same time, the subordinated partitions “Administration”, “Accounting”, “Showroom”,
“Warehouse” generate instances of bpmn::Lane, which are associated to the pool “Bookshop”. Next, we
obtain the elements xpdl::Pool and xpdl::Lane based on the existing one-to-one relation with the
elements bpmn::Pool and bpmn::Lane. In Figure 9, we show a graphical representation of the
translation of roles according to the MOF standard.

Figure 9. Levels M1 (model) and M2 (metamodel) of the MOF hierarchy for the translation of roles.

Transitions. Each element umlad::ControlFlow is translated in one instance of
bpmn::SequenceFlow if it connects two nodes in the same partition of upper level. By the contrary, an
instance of umlad::ControlFlow is translated into one element bpmn::MessageFlow if the
connected nodes are in different partitions of the upper level. One instance of umlad::ObjectFlow is
transformed in one element bpmn::Association. In XPDL, we can find the same connection objects that

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 40

in BPMN, therefore the respective instances of xpdl::Transition, xpdl::MessageFlow and
xpdl::Association are created. We can see, in Figure 10, a graphical representation according to the
MOF standard of the correspondences for transitions.

Tasks. The subtypes of actions umlad::AcceptEventAction and umlad::OpaqueAction are
translated in tasks ReceiveTask and ScriptTask, respectively. After the application of the previous
transformation, we made some adjustments to replace the tasks bpmn::ScriptTask “Check delivery
note”, “Record invoice in account”, and “Record payment” by instances of bpmn::ManualTask,
bpmn::UserTask and bpmn::UserTask, respectively. XPDL has a direct correspondence with the
BPMN tasks; therefore, we obtain automatically the respective elements xpdl::TaskReceive,
xpdl::TaskScript, xpdl::TaskUser and xpdl::TaskManual.

«metamodel»
ControlFlow

«metamodel»
SequenceFlow

«metamodel»
MessageFlow

«model»
LA9

«model»
LA8

«model»
LA8

«model»
LA9

«metamodel»
Transition

«metamodel»
MessageFlow

«model»
LA8

«model»
LA9

«instanceOf»

controlFlow2sequenceFlow

controlFlow2messageFlow

«instanceOf»

«instanceOf»

sequenceFlow2transition

messageFlow2messageFlow

«instanceOf»

«instanceOf»

Figure 10. Levels M1 (model) and M2 (metamodel) of the MOF hierarchy for the translation of transitions.

Rountings
Decisions. The decision nodes (umlad::DesicionNode) and the fusion nodes (umlad::MergeNode)
that appears in an expansion region represent exclusive decisions and fusions, respectively. The translation to
BPMN generates XOR gateways based in data (bpmn::DataBasedExclusiveGateway). The
transformation to XPDL produces elements of kind xpdl::Route. In Figure 11, we can observe these
correspondences in a graphical fashion according to the levels M1 and M2 of the MOF standard.

«metamodel»
DecisionNode

«metamodel»
MergeNode

«model»
Exist?

«model»
Exist?

«metamodel»
DataBasedExclusiv eGateway

«model»
Exist?

«model»
Exist?

«metamodel»
Route

«model»
Exist?

«model»
Exist?

«instanceOf»«instanceOf»

gateway2routeActivity

«instanceOf»

«instanceOf»

mergeNode2dataBasedExclusiveGateway

decisionNode2dataBasedExclusiveGateway

Figure 11. Levels M1 (model) and M2 (meta model) of the MOF scheme for the translation of decisions.

Initial and final nodes. The initial nodes (umlad::InitialNode) produce by default an event
bpmn::NoneStartEvent. However, as the annotation attached to the node that starts the activity in the
UML AD model establishes that the task must be done monthly, we may replace, by following the

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 41

elaborationist postulate, the predefined option by one event bpmn::TimerStartEvent. The
transformation to XPDL of the element bpmn::TimerStartEvent produces one element
xpdl::StartEvent, which references to one object xpdl::TriggerTimer; while the element
bpmn::NoneStartEvent generates only one element xpdl::StartEvent.

The flow final node (umlad::FlowFinalNode) of an expansion region is translated into one element
bpmn::NoneEndEvent. The activity final node (umlad::ActivityFinalNode) is translated into
one instance of bpmn::TerminateEndEvent. In XPDL 2.0, both elements produce instances of
xpdl::EndEvent.

Loop or cycle. The expansion region (umlad::ExpansionRegion) “Stock and price checking” is
translated into one embedded sub-process (bpmn::EmbeddedSubprocess) pointing to a loop
bpmn::MultiInstanceLoop. The items in the delivery note determine the number of times the sub-
process must be repeat. In XPDL, this sub-process is transformed in one element xpdl::ActivitySet
and one activity xpdl::BlockActivity is associated to it, which acts as a trigger. Therefore, the activity
xpdl::BlockActivity has a reference to a loop xpdl::LoopMultiInstance.

Documents. The elements umlad::ObjectNode “Delivery Note” and “Invoice” generate data objects
(bpmn::DataObject). In XPDL, two related objects are created, one element xpdl::Artifact that
points to one element xpdl::DataObject. In Figure 12, we represent these transformation rules in the
levels M1 and M2 of the MOF hierarchy.

«metamodel»
ObjectNode

«model»
Deliv ery Note

«model»
Inv oice

«metamodel»
DataObject

«model»
Delivery Note

«model»
Inv oice

«metamodel»
DataObject

«model»
Delivery Note

«model»
Inv oice

«instanceOf»«instanceOf»

dataObject2dataObject

«instanceOf»

objectNode2dataObject

Figure 12. Levels M1 (model) and M2 (metamodel) of the MOF hierarchy for the translation of documents.

7 Conclusions

In this work, we have brought the MDA approach to the area of workflow definition. This area corresponds to
Interface 1 named Process Definition in the Reference Model of the WfMC. It allows the modeling and
documentation of a workflow, and it defines a separation between the development and the execution
environments. As a result of the modeling and design processes, we obtain a process definition, which can be
used as input to different workflow products, especially to workflow engines. By applying this approach, we
have shown how the business processes, modeled using UML AD or BPMN, can be transformed to an XPDL
specification in a semi-automatic fashion, with no loss of meaning and with a minimum intervention of the
analyst.

As part of this work, we have made an analysis of the semantics of UML AD, BPMN, and XPDL languages.
At the same time, we have defined the semantic equivalencies between UML AD and BPMN, and between
BPMN and XPDL, by means of informal descriptions as well as formally through the respective
transformation rules given in QVT language. The transformations were defined using the SmartQVT tool
[France Telecom R & D, 2008], an open source implementation for Eclipse, that supports the QVT language.
Finally, to validate our proposal, we have presented an application of the transformations to a business
process of goods on consignment.

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 42

Let us note that our approach is not limited to this specific option of output notation. A reverse transformation
or the use of a different output notation could be treated in a similar way.

An important work for the future is the definition of transformation rules allowing the translation not only of
UML AD and BPMN but also of other business processes modeling languages to a metamodel independent of
the notation used. This should work as an intermediary between two different notations in the PIM
perspective of our proposal.

References

Baeten, J.C.M., A Brief History of Process Algebra. Rapport CSR 04-02, TU Eindhoven, 2004.

http://www.win.tue.nl/fm/0402history.pdf, (2004)

Beck, K., Joseph, J., Goldszmidt, G., Learn business process modeling basics for the analyst. IBM

Developerworks. http://www-128.ibm.com/developerworks/library/ws-bpm4analyst/ (2005).

Bézivin, J.; Hammoudi, S.; Lopes, D.; Jouault, F., Applying MDA Approach to B2B Applications: A Road

Map. Workshop on Model Driven Development (WMDD 2004) at ECOOP 2004, Springer-Verlag, LNCS,
vol. 3344, June 2004. (2004)

Bordbar, B., Staikopoulos, A., On behavioural model transformation in Web services. 5th International

Workshop on Conceptual Modeling Approaches for e-Business eCOMO 2004, November 8-12, 2004.
(2004)

Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide. Second edn. Addison

Wesley Professional (2005)

BPMI, Current Implementations of BPMN. http://www.bpmn.org/BPMN_Supporters.htm#current, last

access: 10/01/2008 (2008)

Debnath, N., Zorzan, F.A., Montejano, G., Riesco, D., Transformation of BPMN Subprocesses Based in

SPEM Using QVT. Proceedings of IEEE EIT 2007, pp. 146–151 (2007)

Eloranta, L., Kallio, E., Terho, I., A Notation Evaluation of BPMN and UML Activity Diagrams.

http://www.soberit.hut.fi/T-86/T-86.5161/2006/BPMN vs UML final.pdf (2006)

Filograna, A.; Giunta, G.; Ingraffia, N.; Loiacono, L., An integrated approach for modelling Business

Processes using BPMN and XPDL standards.
http://semantics.eng.it/bxmodeller/docs/An%20integrated%20approach%20for%20modelling%20business%2

0processes%20using%20BPMN%20and%20XPDL%20standards.pdf. (2007)

France Telecom R & D, SmartQVT Documentation. http://smartqvt.elibel.tm.fr (2008)

Gallina, B., Guelfi, N., Mammar, A., Structuring Business Nested Processes Using UML 2.0 Activity

Diagrams and Translating into XPDL. Proceedings of the 3rd GI-Workshop XML4BPM - XML
Integration and Transformation for Business Process Management. Passau, Germany, February 20-22. pp:
281 - 296. (2006)

García, I., Rodriguez, A., Fernandez-Medina, E., Piattini, M., Implementación de Heurísticas en QVT para la

obtención de Clases de Análisis a partir de Modelos de Proceso de Negocio Seguros. IV Taller sobre
Desarrollo de Software Dirigido por Modelos, MDA y Aplicaciones (DSDM’07). Zaragoza, España,
(2007)

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 43

Gardner, T.; Amsden, J.; Griffin, C.; Iyengar, S., Draft UML 1.4 Profile for Automated Business Processes
with a mapping to BPEL 1.0. Version 1.1. IBM.
http://www.ibm.com/developerworks/rational/library/content/04April/3103/3103_UMLProfileForBusines
sProcesses1.1.pdf. (2003).

Gardner, T., UML Modelling of Automated Business Processes with a Mapping to BPEL4WS.
 http://www-128.ibm.com/developerworks/rational/library/4593.html (2004)

Garrido, S.D., Modelado de workflow con redes de Petri coloreadas condicionales. Master’s thesis, Instituto

Politécnico Nacional. México (2005)

Gronmo, R., Jaeger, M.C., Model-Driven Semantic Web Service Composition, 12th Asia-Pacific Software

Engineering Conference (APSEC), Taipei, Taiwan (2005)

Guelfi, N.; Mammar, A., A formal framework to generate XPDL specifications from UML activity diagrams.

Proceedings of the 2006 ACM symposium on Applied computing, (2006)

INRIA, The Atlas Transformation Language (ATL). http://modelware.inria.fr/rubrique12.html, last access:

10/04/2008, (2008)

Kalnins, A., Vitolins, V., Use of UML and Model Transformations for Workflow Process Definitions.

TECHNIKA, http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0607044, (2006) pp. 3-15

Kleppe, A.,Warmer, J., Bast,W., MDA Explained, TheModel-Driven Architecture: Practice and Promise.

Addison Wesley (2003)

Kurtev, I., State of the Art of QVT: A Model Transformation Language Standard, Applications of Graph

Transformations with Industrial Relevance, Third International Symposium, AGTIVE 2007, Kassel,
Germany, October 10-12, 2007, Revised Selected and Invited Papers. Section: Queries, Views, and Model
Transformations. LNCS, Vol 5088, pp.: 377 - 393. Publisher: Springer-Verlag Berlin, Heidelberg (2008)

Kuznetsov, M. B., UML Model Transformation and Its Application to MDA Technology, Programming and

Computer Software, Vol. 33, No. 1, pp. 44–53. Pleiades Publishing Ltd., 2007. Original Russian Text
published in Programmirovanie, Vol. 33, No. 1. ISSN 0361-7688, (2007)

Lohmann, C., Greenyer, J., Jiang, J., Applying Triple Graph Grammars For Pattern-Based Workflow Model

Transformations. Proceedings of the Journal of Object Technology, (2007).

McNeile, A., MDA: The Vision with the Hole?,
 http://www.metamaxim.com/download/documents/MDAv1.pdf, (2003)

Mens, T., Czarnecki, K., Pieter Van Gorp, P., A Taxonomy of Model Transformations, Electronic Notes in

Theoretical Computer Science (ENTCS) Volume 152, (March 2006), pp. 125-142, ISSN: 1571-0661.
Elsevier Science Publishers B. V. Amsterdam, The Netherlands (2006)

Mora, B.; Ruiz, F.; García, F.; Piattini, M., Experiencia en Transformación de Modelos de Procesos de

Negocios desde BPMN a XPDL, Ideas’07, X Workshop Iberoamericano de Requisitos y Ambientes de
Software, Venezuela, May 26, 2007. (2007)

MOLA Project, http://mola.mii.lu.lv, Last access: 03/04/2008, (2008)

OASIS, WS-BPEL 2.0 Specification. Technical report,
 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (2007)

OMG, Meta Object Facility (MOF) 2.0 Adopted Specification. Technical report (2003a)

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 44

OMG, Model Driven Architecture Guide Version 1.0.1. Document number: omg/2003-06-01 (2003b)

OMG, The Object Constraint Language Specification. Version 2.0. Technical report (2004)

OMG, Unified Modeling Language: Superstructure. Version 2.0. Formal/05-07-04,
 http://www.omg.org/spec/UML/2.0/Superstructure/PDF/ (2005)

OMG, Business process modeling notation specification. Final Adopted Specification dtc/06-02-01,

http://www.bpmn.org/Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-01.pdf, (2006)

OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Final adopted

specification ptc/07-07-07, (2007)

Owen, M., Raj, J., BPMN and Business Process Management: Introduction to the New Business Process

Modeling Standard. Popkin Software (2003)

Rodríguez, A., Fernández-Medina, E., Piattini, M., Using QVT to obtain Use Cases from Secure Business

Processes modeled with BPMN, 8º Workshop on Business Process Modeling, Development, and Support
(BPMDS), June 2007, Trondheim, Norway (2007) pp:319-323

Rodríguez, A., Fernández-Medina, E. y Piattini, M., Towards Obtaining Analysis-Level Class and Use Case

Diagrams from Business Process Models, 4º International Workshop on Foundations and Practices of
UML (FP-UML), Barcelona, España. Lecture Notes in Computer Science Volumen 5232, (2008). pp:103-
112.

Russel, N., van der Aalst, W., ter Hofstede, A.H.M., Edmond, D., Workflow Resource Patterns:

Identification, Representation and Tool Support. In: Proc. of the 17th Conference on Advanced
Information Systems Engineering. Volume 3520 of LNCS. Springer, Berlin (2005) pp.216–232

Russel, N., van der Aalst, W., ter Hofstede, A.H.M., Wohed, P., On the Suitability of UML 2.0 Activity

Diagrams for Business Process Modelling. Technical Report BPM-06-03, BPM Center (2006)

Shapiro, R.M., XPDL 2.0: Integrating Process Interchange and BPMN. Workflow Handbook. (2006)

W3C, Web Services Conversation Language (WSCL) 1.0. Technical report,
 http://www.w3.org/TR/2002/NOTE-wscl10-20020314/ (2002a)

W3C, Web Service Choreography Interface (WSCI) 1.0. Technical report,
 http://www.w3.org/TR/2002/NOTE-wsci-20020808/ (2002b)

Watson, A.: OMG’s new modeling specifications. Keynote speech, ECMDA-FA 2005, Nuremberg, Germany,

November 2005, (2005)

White, S. A. P., Process Modelling Notations and Workflow Patterns,
http://www.omg.org /bp-corner/bp-files/Process_Modeling_Notations.pdf (2004)

White, S., Using BPMN to Model a BPEL Process. BPTrends,
http://www.bptrends.com/publicationfiles/03-05%20wp%20mapping%20bpmn%20to%20bpel-%20white.pdf

(2005)

Workflow Management Coalition: XML Process Definition Language (WFMCTC-1025). Technical report

(2005)

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 45

Appendix. XPDL specification for the business process “Book Consignment”.

<Package>
 <Pools>
 <Pool Process=”PE” Id=”E” Name=”Publisher” BoundaryVisible=”true”>
 <Lanes>
 <Lane Id=”E0” Name=”Publisher”></Lane>
 </Lanes>
 </Pool>
 <Pool Process=”PL” Id=”L” Name=”Bookshop” BoundaryVisible=”true”>
 <Lanes>
 <Lane Id=”L0” Name=”Warehouse”></Lane>
 <Lane Id=”L1” Name=”Showroom”></Lane>
 <Lane Id=”L2” Name=”Accounting”></Lane>
 <Lane Id=”L3” Name=”Administration”></Lane>
 </Lanes>
 </Pool>
 </Pools>
 <Participants>
 <Participant Id=”EP” Name=”Publisher”>
 <ParticipantType=”ROLE” />
 </Participant>
 <Participant Id=”LP” Name=”Bookshop”>
 <ParticipantType=”ROLE” />
 </Participant>
 </Participants>
 <Artifacts>
 <Artifact Id=”LN1D” Name=”Delivery Note” ArtifactType=”DataObject”>
 <DataObject Id=”LN1” Name=”Delivery Note” />
 </Artifact>
 <Artifact Id=”LN3D” Name=”Delivery Note” ArtifactType=”DataObject”>
 <DataObject Id=”LN3” Name=”Delivery Note” />
 </Artifact>
 <Artifact Id=”LN6D” Name=”Invoice” ArtifactType=”DataObject”>
 <DataObject Id=”LN6” Name=”Invoice” />
 </Artifact>
 <Artifact Id=”LN11D” Name=”Stock” ArtifactType=”DataObject”>
 <DataObject Id=”LN11” Name=”Stock” />
 </Artifact>
 </Artifacts>
 <MessageFlows>
 <MessageFlow Id=”LA5” Source=”LN5” Target=”EN3” />
 <MessageFlow Id=”LA9” Source=”LN9” Target=”EN4” />
 </MessageFlows>
 <Associations>
 <Association Id=”EA2” Source=”EN2” Target=”LN1D” AssociationDirection=”None”>
 <Association Id=”EA3” Source=”EN3” Target=”LN6D” AssociationDirection=”None”>
 <Association Id=”LA1” Source=”LN1D” Target=”LN2” AssociationDirection=”None”>
 <Association Id=”LA2” Source=”LN2” Target=”LN3D” AssociationDirection=”None”>
 <Association Id=”LA3” Source=”LN3D” Target=”LN4” AssociationDirection=”None”>
 <Association Id=”LA6” Source=”LN6D” Target=”LN7” AssociationDirection=”None”>
 <Association Id=”LA10” Source=”LN10” Target=”LN11D” AssociationDirection=”None”>
 <Association Id=”LA11” Source=”LN11D” Target=”LN5” AssociationDirection=”None”>
 </Associations>
 <WorkflowProcesses>
 <WorkflowProcess Id=”PE” Name=”Publisher”>
 <Actitities>
 <Activity Id=”EN1” Name=””>
 <StartEvent Trigger=”Timer”>
 <TriggerTimer TimeCycle=”Monthly” />
 </StartEvent>
 </Activity>
 <Activity Id=”EN2” Name=”Deliver news service”>
 <Implementation>
 <No/>
 </Implementation>
 </Activity>
 <Activity Id=”EN3” Name=”Send invoice”>
 <Implementation>
 <No/>

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 46

 </Implementation>
 </Activity>
 <Activity Id=”EN4” Name=”Receive payment”>
 <Implementation>
 <No/>
 </Implementation>
 </Activity>
 <Activity Id=”EN5” Name=””>
 <EndEvent Result=”Terminate” />
 </Activity>
 </Activities>
 <Transitions>
 <Transition Id=”EA1” Name=”” From=”EN1” To=”EN2” />
 <Transition Id=”EA4” Name=”” From=”EN4” To=”EN5” />
 </Transitions>
 </WorkflowProcess>
 <WorkflowProcess Id=”PL” Name=”Bookshop”>
 <ActivitySets>
 <ActivitySet Id=”LN10AS”>
 <Activities>
 <Activity Id=”SN1” Name=””>
 <StartEvent Trigger=”None” />
 </Activity>
 <Activity Id=”SN2” Name=”Exist?”>
 <Route GatewayType=”XOR” XORType=”Data” MarkerVisible=”true” />
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type=”XOR”>
 <TransitionRefs>
 <TransitionRef Id=”SA2” />
 <TransitionRef Id=”SA3” />
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 </Activity>
 <Activity Id=”SN3” Name=”Update Stock”>
 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”SN4” Name=”Add Book”>
 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”SN5” Name=”Put Price Label”>
 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”SN6” Name=”Cost Changed?”>
 <Route GatewayType=”XOR” XORType=”Data” MarkerVisible=”true” />
 <TransitionRestrictions>
 <TransitionRestriction>
 <Split Type=”XOR”>
 <TransitionRefs>
 <TransitionRef Id=”SA7” />
 <TransitionRef Id=”SA8” />
 </TransitionRefs>
 </Split>
 </TransitionRestriction>
 </TransitionRestrictions>
 </Activity>
 <Activity Id=”SN7” Name=”Update Cost”>

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 47

 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”SN8” Name=””>
 <Route GatewayType=”XOR” XORType=”Data” MarkerVisible=”true” />
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type=”XOR” />
 </TransitionRestriction>
 </TransitionRestrictions>
 </Activity>
 <Activity Id=”SN9” Name=”Put new price labels”>
 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”SN10” Name=””>
 <Route GatewayType=”XOR” XORType=”Data” MarkerVisible=”true” />
 <TransitionRestrictions>
 <TransitionRestriction>
 <Join Type=”XOR” />
 </TransitionRestriction>
 </TransitionRestrictions>
 </Activity>
 <Activity Id=”SN11” Name=””>
 <EndEvent Result=”None” />
 </Activity>
 <Activity Id=”SN12” Name=”Put in bookcase”>
 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”SN13” Name=”Withdraw outdated copies”>
 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”SN14” Name=”Return copies to the shelves”>
 <Implementation>
 <Task>
 <TaskScript />
 </Task>
 </Implementation>
 </Activity>
 </Activities>
 <Transitions>
 <Transition Id=”SA1” Name=”” From=”SN1” To=”SN2” />
 <Transition Id=”SA2” Name=”” From=”SN2” To=”SN3”>
 <Condition Type=”Condition”>si</Condition>
 </Transition>
 <Transition Id=”SA3” Name=”” From=”SN2” To=”SN4” >
 <Condition Type=”Condition”>no</Condition>
 </Transition>
 <Transition Id=”SA4” Name=”” From=”SN4” To=”SN5” />
 <Transition Id=”SA5” Name=”” From=”SN3” To=”SN6” />
 <Transition Id=”SA6” Name=”” From=”SN12” To=”SN10” />
 <Transition Id=”SA7” Name=”” From=”SN6” To=”SN8”>
 <Condition Type=”Condition”>no</Condition>
 </Transition>
 <Transition Id=”SA8” Name=”” From=”SN6” To=”SN7”>
 <Condition Type=”Condition”>si</Condition>
 </Transition>

Argañaraz et al., An MDA approach to Business Process Model Transformations, EJS 9(1) 24-48 (2010) 48

 <Transition Id=”SA9” Name=”” From=”SN7” To=”SN13” />
 <Transition Id=”SA10” Name=”” From=”SN14” To=”SN8” />
 <Transition Id=”SA11” Name=”” From=”SN8” To=”SN10” />
 <Transition Id=”SA12” Name=”” From=”SN10” To=”SN11” />
 <Transition Id=”SA13” Name=”” From=”SN5” To=”SN12” />
 <Transition Id=”SA14” Name=”” From=”SN13” To=”SN9” />
 <Transition Id=”SA15” Name=”” From=”SN9” To=”SN14” />
 </Transitions>
 </ActivitySet>
 </ActivitySets>
 <Actitities>
 <Activity Id=”LN2” Name=”Check Delivery Note”>
 <Implementation>
 <Task>
 <TaskManual />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”LN4” Name=”Record Delivery Note”>
 <Implementation>
 <Task>
 <TaskUser />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”LN5” Name=”Make statement”>
 <Implementation>
 <Task>
 <TaskReceive />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”LN7” Name=”Record invoice in account”>
 <Implementation>
 <Task>
 <TaskUser />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”LN8” Name=”Prepare payment”>
 <Implementation>
 <Task>
 <TaskManual />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”LN9” Name=”Record payment”>
 <Implementation>
 <Task>
 <TaskUser />
 </Task>
 </Implementation>
 </Activity>
 <Activity Id=”LN10” Name=”Stock and Prices Checking” >
 <BlockActivity ActivitySetId=”LN10AS” />
 <Loop LoopType=”MultiInstance”>
 <LoopMultiInstance MI_Ordering=”Sequential” />
 </Loop>
 </Activity>
 </Activities>
 <Transitions>
 <Transition Id=”LA7” Name=”” From=”LN7” To=”LN8” />
 <Transition Id=”LA8” Name=”” From=”LN8” To=”LN9” />
 </Transitions>
 </WorkflowProcess>
 </WorkflowProcesses>
</Package>

