
M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 67

SADIO Electronic Journal of Informatics and

Operations Research
http://www.dc.uba.ar/sadio/ejs

vol. 9, no. 1, pp. 67-97 (2010)

A model for capturing the software architecture

design process of mobile systems

M. Luciana Roldán1,2 M. Celeste Carignano1,2 Silvio Gonnet1,2 Horacio Leone1,2

1 Instituto de Desarrollo y Diseño (INGAR)
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Tecnológica Nacional (UTN)
Avellaneda 3657, Santa Fe, 3000, Argentina

2 Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información (CIDISI)
Universidad Tecnológica Nacional – Facultad Regional Santa Fe (UTN - FRSF)
Lavaise 610, Santa Fe, 3000, Argentina

e-mail: {lroldan, celestec, sgonnet, hleone}@santafe-conicet.gov.ar

Abstract

Numerous efforts have addressed the problem of defining the fundamental
architectural building blocks and methods for modelling software architectures in
dynamic mobile environments. However, there is a lack of tools for documenting
the evolution of the products generated during the design of software architectures
for mobile systems. Based on a generic versioning administration scheme, a
model to capture and manage the products of a software architecture design
process is proposed placing the focus on mobility concerns. This model follows an
operational approach, where design decisions are represented as architectural
operations that are captured when they are applied during a design project. The
capture of this information enables the tracing of such a design process and its
resulting products.

Keywords: Design Process Support, Mobility, Software
Architecture

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 68

1 Introduction

During the last few years, we have witnessed an exceptional technological revolution. This technological
explosion has made it possible the development of complex mobile applications, which have evolved faster
and faster (Roman et al., 2000). These new applications must be adaptable to technological changes, so they
need to be flexible and extensible enough to support new features or to change the existing ones. As a means
of controlling such a complexity in systems construction and evolution, software architecture has emerged
(Medvidovic et al., 2003; Mikic-Rakic et al., 2008). Mainly, mobility constitutes an additional factor of
complexity because in a mobile computing system, components may move across a network of locations,
changing the environment in which computations need to be performed. Numerous efforts have addressed the
problem of defining the fundamental architectural building blocks and methods for modelling software
architectures in dynamic mobile environments (Ali et al., 2008; Lopes et al., 2002; Medvidovic and Mikic-
Rakic, 2001; Schäfer, 2006). However, there is a lack of systematic methods and techniques to assist the
designer in developing, documenting and evolving mobile software architectures. Important contributions
recognize that software architecture is the result of architectural design decisions made over time (Tyree and
Akerman, 2005; Kruchten et al., 2006; Jansen et al., 2007) and its documentation should not only describe the
architecture of a system, but also “why” that architecture looks the way it does (Jansen et al., 2008).
Therefore, the software architecture design decisions underlying the architecture provide that “why” (Jansen
et al., 2008). If the knowledge concerning the domain analysis, the patterns used, the design options
evaluated, and the decisions made, is not captured, it is lost and thus unavailable to support subsequent
decisions (Ali Babar and Gorton, 2007). The design decisions captured and traced can be used as a memory
aid for those who participate in making decisions and as a source of information for stakeholders when they
need it (Burge et al., 2008). All these concepts about software architecture design rationale are strictly
applicable and necessary when the architectural design is focused on mobile systems.

Regarding the administration of the products of a design process and their evolution, software configuration
management systems (SCM) may provide such assistance (Westfechtel and Conradi, 2003). As Westfechtel
(1999) has pointed out, SCM systems have proved to be an indispensable aid in organizing the products
generated along big development efforts. However, their underlying data models to represent versions are
very simple. But, more importantly, SCM systems have been created just to focus on the products of
development processes, neglecting the representation of the activities that have generated them, the decisions
that have been taken, the people and computerized tools that have performed such activities and the rationale
underlying the adopted decisions, etc. Thus, they do not satisfy the need to capture the design knowledge.
Once a design stage is complete, what remains is mainly the mobile software architecture but there is no
explicit representation of how this product was obtained. Consequently, to overcome such troubles, it is
necessary to recognize the design activities that are carried out to evolve from the initial design specifications
to the final architecture; at the same time, it is crucial to identify the design decisions associated with each
activity, along with their corresponding assumptions, simplifications, and underlying rationale. In fact, it is
this design experts’ knowledge that has to become explicit. Particularly, given that software architectures are
centred on non-functional requirements of a complex system, new tools are needed, which allow the designers
to set the correspondences between such requirements and the proposed architecture of a mobile system.
Therefore, the key issue this contribution addresses is a model to capture and trace a whole software
architecture design process of a mobile application, from the requirements stage to the last version of the
designed architecture. The representation of evolution in architectural configurations during system runtime,
as it is considered by Georgas et al. (2005), is not within the scope of this paper.

The proposed approach follows an operational perspective, where the design decisions are represented as
design operations applied to the several versions of the products generated during the design process. The
proposal constitutes a means of documenting the design process, by capturing each executed operation when
the design is carried out, and maintaining the design history. This feature establishes a distinction from the
proposal of Jansen et al. (2008), which considers capturing the design decisions after completing (part of) the
design process. Additionally, the model is flexible enough to be fitted into mobile applications domain. It can
easily incorporate mobility related concepts, such as stationary or mobile, and logical or physical components.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 69

This article is organized as follows: Section 2 outlines the generic versioning scheme on which the model is
based. It is not intended for a specific domain; on the contrary, it could be applied to different domains such
as software (Roldan et al., 2006) and chemical engineering (Gonnet et al., 2007). Then, that section defines
suitable extensions to make it applicable to the software architecture design process of mobile systems.
Therefore, the model is outlined in an object-oriented approach to provide the foundations for the
development of a computational tool that enables the capture and tracing of a design process; particularly, the
definition of the specific concepts and operations for mobility domain are included. The concepts and
operations applicable to this kind of systems are derived from ADLs for mobility and a software architecture
method. Afterwards, Section 3 presents a case study of a mobile sales system and Section 4 introduces a
prototype to validate our approach. Finally, this paper ends in Section 5 emphasizing the main contributions
of the proposed model.

2 A model to capture and trace design processes

The underlying versioning scheme of our proposal considers a design process as a sequence of activities that
operate on the products of the design process, called design objects. In particular, this contribution focused on
the software architecture design process (SADP). Therefore, design objects can be the building blocks of the
artefact being designed (i.e. the physical components and connectors on which the logical components and
connectors are deployed), and the specifications to be met (i.e. quality requirements such as availability or
performance). Consequently, these objects evolve as the SADP takes place, giving rise to several versions that
must be kept. They are represented in two levels, the repository and the versions level. The repository level
keeps a unique entity for each design object that has been created and/or modified due to the model evolution
during a design project. This object is called versionable object (Fig. 1). Furthermore, relationships among the
different versionable objects are maintained in the repository (Association, Fig. 1). On the other hand, the
versions level keeps the different versions of each design object. These are called object versions (Fig. 1). The
relationship between a versionable object and its object versions is represented by the version association.

Fig. 1. Process version administration model (PVAM).

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 70

Therefore, a given design object keeps a unique instance in the repository and all the versions it assumes in
the different model versions belong to the versions level. At a given stage on the execution of a design project,
the states assumed by the set of relevant design objects supply a snapshot of the state of SADP, which are
denominated model version. According to the proposed model, a new model version is generated by applying
a sequence of operations (φ) on a predecessor model version. Therefore, the representation scheme of model
versions has a tree structure, where each model version is a node and the root is the initial model version.
Given the fact that the model evolution is posed as a history made up of discrete situations, Gonnet et al.
(2007) adopt the situation calculus for modelling such version generation process. They define a belong(v,m)
predicate using the format of successor state axioms, which allows to know the object versions (v) that belong
to a model version (m). This makes the reconstruction of a model version mi+1 possible by applying all
operation sequences from the initial model version m0. The whole formal representation of this scheme is not
within the scope of this paper and is available in Gonnet et al. (2007). The primitive operations that were
proposed in such a versioning scheme to represent the transformation of model versions are add, delete, and
modify. By using the add(v) operation, an object version v that did not exist in a previous model version can
be incorporated into a successor model version. Conversely, the delete(v) operation eliminates an object
version v that existed in the previous model version. In addition, if a design object has a version vp, the
modify(vp, vs) operation creates a new version vs of it.

Each operation applied to a model version is captured by means of VersionHistory relationships (Fig. 1). They
keep references among the object versions on which the operation was applied and the ones arising as result
of its execution. Additionally, VersionHistory instances are aggregated in a ModelHistory instance, to
represent the sequence of operations that caused a model evolution.

Fig. 2 illustrates the described schema for representing the evolution of model versions, regarding a fragment
of a software architecture design process for a mobile application. Further details of the design process of a
similar mobile system will be provided in Section 3. The example presents two model versions where the
model version mq is generated from the model version mk by the application of a sequence of operations φq. In
this case, design objects represent instances of concepts obtained from architectural description languages
such as Con Moto (Schäfer, 2006); and the primitive operations have been extended by operations like
applyThreeLayers (explained in Section 2.2). This operation applies a particular case of Layers pattern
(Buschmann et al., 1996), which refines a logical component into three logical components arranged in layers.
In this case, an applyThreeLayers operation belongs to the sequence of operations φq. The intention of the
architect is to split the original component responsibilities into three groups, following a configuration where
the lower layers offer services to the upper ones. Therefore, the ServerSideApp component is refined in
ServerApplicationLayer, ServerMiddlewareLayer, and ServerDataAccessLayer components, with their ports
and connections. Fig. 2 presents a partial view of repository, versions, and inferred model levels. The inferred
models level is obtained from views produced by the versions level on the repository. A SalesSytem system
and an ApplicationServer physical stationary component belong to both inferred model versions. At
repository level, ApplicationServer is represented by ApplicationServervo, an instance of versionable object
(the instances of SalesSystem are not shown for simplicity). ApplicationServervo is linked with the versionable
objects that represent ServerSideApp, ServerApplicationLayer, ServerMiddlewareLayer, and
ServerDataAccessLayer components (ServerSideAppvo, ServerApplicationLayervo, ServerMiddlewareLayervo,
and ServerDataAccessLayervo versionable objects, respectively). As Fig. 2 shows, ApplicationServervo has an
object version ApplicationServerv1 that belongs to the model version mk and mq. In addition, ServerSideApp
component only belongs to the k inferred model version. At versions level, this logical stationary component
has an object version ServerSideAppv1, which belongs to the model version mk but it does not belong to mq. As
a consequence of applyThreeLayers execution, ServerSideAppv1 was deleted from the successor model
version (mq) and the new object versions representing the three layers were added to mq
(ServerApplicationLayerv1, ServerMiddlewareLayerv1, and ServerDataAccessLayerv1).

The versioning scheme captures the applied sequence of operations, by means of an instance of ModelHistory.
This instance links the previous model version (mk in Fig. 2) with the successor model version (mq in Fig. 2).
Furthermore, the VersionHistory instances, that represent each applied individual operation, are part of the
ModelHistory instance. Each VersionHistory instance keeps not only what the executed operation was, but

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 71

also what the predecessor object versions (ServerSideAppv1 in Fig. 2) and the successor object versions
(results) were.

Fig. 2. A fragment of a design process captured using PVAM.

2.1 The Domain Model

The Domain Package (Fig. 1) enables the definition of concepts of software architectures domain of mobile
systems, whose instances are going to be captured (such as logical stationary component and logical
connector in Fig. 2). Therefore, for each design object type, an instance of ModellingConcept must be
generated. Additionally, its properties are specified by a set of instances of Property class. Furthermore, the
relationships among those concepts are instantiated from DomainRelationship. In Fig. 3, we illustrate a
software architecture domain model, which includes all the concepts the architect manages. A first set of
modelling concepts that defines the domain model proposed in this paper arises from the software architecture
design method that the architect adopts. In this case, it is assumed that the architect prefers the ADD method
(Bass et al., 2003). The ADD method is based on a decomposition process where architectural patterns (or
styles) are chosen at each stage to fulfil a set of quality scenarios. Then, component and connector types
provided by architectural patterns are instantiated and functionality (responsibilities) is allocated to them.
ADD’s input is a set of requirements (functional and quality requirements). Quality requirements are
expressed as a set of system specific quality scenarios, whereas functional requirements are translated into a
set of responsibilities. Quality scenarios and responsibilities can be delegated to other components when the
original component is refined. When a method iteration is finished, the designer verifies how well the
architectural design achieves the scenarios and sets an assessment. Given that ADD proposes various types of
views to represent the software architecture under design, the architect chooses Con Moto (Schäfer, 2006) as
the architectural description language that provides the notation to represent the software architecture of an

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 72

application with mobility features using a behavioural view, together with a structural and deployment view.
In this way, regarding such an ADL, a new set of concepts are identified and included in the domain model.

Fig. 3. A Domain Model.

Con Moto provides the building blocks to create an architectural model that reflex the physical structure of a
mobile system. They are physical components (such as devices, servers and workstations) and physical
connectors (meaning the communication links that form the network topology). Physical components act as
the execution environment for logical components. Their computational resources such as cpu and, memory
can be expressed as properties. Also, regarding physical connectors, properties like bandwidth and protocol
can be indicated. In addition, Con Moto provides the elements to model in detail the logical structure of a
system, which comprises information about software components (represented by logical components), and
their dependencies or interactions (represented by logical connectors). The deployment of a logical
component on a physical component is expressed in Fig. 3 by the relationship hostedByRel. Physical or logical
components which are able to change their location need to be represented in the domain model; therefore, the
domain model defines a second hierarchy level of components type. Regarding physical components, the
domain includes physicalStationaryComponent and physicalMobileComponent modelling concepts. The first
one comprises physical units such as servers and workstations, while the second one comprises mobile
devices (such as handhelds and cellular telephones). Considering logical components, new modelling
concepts are proposed: logicalStationaryComponent and logicalMobileComponent. The first one represents
classical software components that run in a given physical host, and the second one comprises components
like mobile agents and components replicated in more than one host; these ones are capable of passing the
control of an execution to a replica situated in another physical location, and resuming the execution in the
last point. To represent this potential behaviour in an architectural design, the domain model includes a
transientExecutionLocationRel modelling concept, which sets a link between a given logical mobile
component and another component. This could express two situations: i) the first component is able to
migrate to the second one in order to run there, or ii) a replica of the first component might exist on the
second one, which could take the control of an execution. Mode and order properties indicate which kind of
mobility is represented and the order in a list of possible locations to which a component could move (Field et
al., 2006; Lima et al., 2004).

In order to allow communication, physical as well as logical components have ports, which permit the
communication of processes through connectors. Con Moto makes possible to describe an architecture where
a logical connector is embedded in a given physical connector. In other words, it makes possible to represent
that two logical components deployed on different physical components can communicate between
themselves using a logical connector. This logical connector is canalized by a physical connector set between
the two physical components. This architectural representation is achieved by canalizedByRel concept, which
is included in the domain model (Fig. 3). In spite of not being considered by Con Moto, we have included the
role modelling concept in order to make consistent the domain model with other ADLs that are not specific
for mobility, like ACME (Garlan et al., 2000). A role is simply an interface of a connector. Thus, the way of
linking components and connectors is by attaching a port with a role (attachment association in Fig. 3).

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 73

It should be noted that hostedByRel, transientExecutionLocationRel, and canalizedByRel could be modelled
as domain relationships, as it was done in Fig. 2, where hostedByRel-type links between components were
represented as associations (instances of domain relationships). However, in Fig. 3, they have been reified as
modelling concepts to enable the capture of their versions.

The defined domain model provides enough concepts to model the artefacts of a software architecture design
process of a mobile system, since it covers the main techniques or paradigms of code mobility (also called as
code migration). It is straightforward to represent a potential case of “remote evaluation” (Schäfer, 2006;
Bieszczad and White, 2007), where a program (a logicalMobileComponent-type object, lmc1) could be
transferred from a node (physicalStationaryComponent-type object, psc1) to another (psc2) to be executed
there. In this case of mobility, the first node is in control of the operation and the results are returned to it.
This fact can be represented in an architectural design by means of a hostedByRel-type object between the
component psc1 and lmc1, which indicates that lmc1 has been originally deployed to be executed in psc1.
Depending on several factors (such as processing constraints), lmc1 is able to move to another location. This
possible situation could be represented in a model version by adding a transientExecutionLocation-type
object, tel1, to link lmc1 with a different physicalStationaryComponent-type object, psc2. In this particular
case, the mode property value of tel1 object must indicate that it is a “remote evaluation” case of mobility, and
the order is 1. If the mobile component is intended to migrate to more than one component, additional
transientExecutionLocation-type objects must be added to link each possible destination component,
indicating the order (order property) to follow during the migration process (with consecutive numbers).

Additionally, the proposed design domain (Fig. 3) supports the representation of “code-on-demand”. In this
case, a program and its necessary data (a logicalMobileComponent-type object, lmc1) is transferred to a node
(a physicalStationaryComponent-type object, psc1), which is the component that controls the operation.
Similar to the previous case, an explicit transientExecutionLocation-type relationship object, tel1, links psc1
with lmc1. In this particular case, the value of mode property of tel1 version must indicate that it is a “code-
on-demand” case of mobility.

Another kind of mobility that can be represented using the concepts included in the design domain (Fig. 3) is
“mobile agents”. By means of this technique, a mobile agent or program (logicalMobileComponent-type
object) is transferred to a new node (physicalStationaryComponent-type object) to be executed there, being
the results returned to the former location of the agent. In this case, given the agent autonomy, the agent itself
controls the operation. In this situation, the value of mode property of the transientExecutionLocation object
version indicates that “mobile agent” is the case of mobility employed. Additionally, some responsibility-type
object versions could be linked to the logicalMobileComponent-type object that represents the mobile agent.
Examples of responsibilities might be learning, cooperating, moving to a new location, and modifying its
behaviour.

The proposed domain model (domain package, Fig. 1) is flexible enough to define a design domain suitable
for the architect’s needs and preferences. The domain package is understood as a language that allows us to
define the various design object types with the properties and relationships between them. In this section, the
domain model is instantiated with concepts of ADD and Con Moto. However, it could be instantiated with the
concepts defined by any method and/or ADL. For example, if Ambient-PRISMA (Ali et al., 2006; Ali et al.,
2005) is considered, the ModellingConcept class must be instantiated to represent the Ambient-PRISMA
concepts defined in Ali et al. (2005), such as “Ambient” and “Aspect”. Also, specific relationships defined by
Ambient-PRISMA can be instantiated from DomainRelationship class. An example is “is-located-in”
relationship, which allows linking concepts like Component and Ambient.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 74

2.2 The Operations Model

The primitive operations add, delete, and modify provided by the versioning scheme to represent the
transformation of model versions are not enough for representing the complex activities of designing the
architecture of mobile systems. To make possible the extension of the available set of operations with
operations suitable for such design domain, an operations model is proposed. To provide the foundations for
computational tools, an object-oriented operations model is proposed, which is flexible enough to specify the
domain operations to be used by the architects.

Therefore, a Command abstract class is introduced in the Operations package illustrated in Fig. 4. An
operation is defined as a macro command that simply executes a sequence of commands (see in Fig. 4
Operation class represented as subclass of MacroCommand abstract class). The arguments and body of an
operation must be defined to specify it. The commands of the body can be primitives (such as add, delete, or
modify), iteration commands, variable assignment commands, or other existent operations. Iteration is a
predefined command with a repetitive behaviour. It is specialized in Loop command, which executes a body
(a sequence of ordered commands) for each element in a collection, and in Next command, which accesses
sequentially to each element of a collection. Another predefined command is VariableAssignment, which
represents the assignment of certain value to a variable with a given type. It should be noted that the
modelling concept over which an operation is applied must be explicitly indicated.

Fig. 4. Operations Package.

Furthermore, every command has one or more data typed arguments, which are a kind of variable. Also, a
variable has a type and can be declared and used in the body of an operation. DataType class generalizes the
available types: PrimitiveDataType, CollectionType, and ModellingConcept. The interface RunTimeValue
represents the run-time values assumed by a variable or argument during the execution of an operation, which
can be realized by literals, object versions, modelling concepts, or property values (Literal, ObjectVersion,
ModellingConcept, PropertyValue in Fig. 4).

Many possible operations can be instantiated from the operations model. In a previous work (Roldán et al.,
2006) several operations have been specified. They range from basic ones, like addComponent,
deleteComponent, and addScenario, to operations that apply a style or tactic, like applyClientServer and
applyMVC. Although these operations are valid for any architectural domain, this contribution focuses on

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 75

specific operations to design the software architecture of mobile applications. Table 1 classifies a set of
operations related to structural concepts in three different levels of complexity:

i) Basic Operations: operations that allow to create and delete basic design objects (like physical or
logical components and connectors);

ii) Special Operations: more complex operations that involve object refinement or delegation;

iii) ApplyPattern Operations: high level operations that generate a new set of design objects, which have
a configuration based on an architectural pattern; in some cases, they do not modify the structure of the
architectural model, but affect some properties of design objects.

Table 1. Basic, Special, and ApplyPatterns Operations

Basic Operations
addPhysicalStationaryComponent deletePhysicalStationaryComponent
addPhysicalMobileComponent deletePhysicalMobileComponent
addLogicalStationaryComponent deleteLogicalStationaryComponent
addLogicalMobileComponent deleteLogicalMobileComponent
addPhysicalConnector deletePhysicalConnector
addLogicalConnector deleteLogicalConnector
addHostedByRel deleteHostedByRel
addTransientExecutionLocationRel deleteTransientExecutionLocationRel
addCanalisedRel deleteCanalisedRel
addQualityRequirement deleteQualityRequirement
addFunctionalRequirement deleteFunctionalRequirement
addPort deletePort
addRole deleteRole
addProperty deleteProperty
addResponsibility deleteResponsibility
addScenario deleteScenario

Special Operations
setPhysicalConnector delegateResponsibility

setLogicalConnector delegateScenario

refineComponent verifyScenario

refineResponsibility setAttachment

ApplyPatterns Operations
applyClientServer applySynchronization
applyMVC applyInformationBroker
applyThreeLayers applyLogicalMobility

Fig. 5 presents functional specifications for some of the basic operations defined in Table 1. The rest of the
operations are defined in a similar way, as they are defined in terms of primitive operations like add(c), and
non-primitive ones, like addPort(c, p). For example, the addPhysicalMobileComponent(s, pc, lports, lresps,
attr) operation allows adding a physical mobile component pc to a system s. As it can be seen in Fig. 5, this
operation is carried out by a series of commands. First, a version of a physical mobile component c is added
(add(c)). After that, a set of responsibilities (specified by the lresp list argument) and ports (detailed by the
lports list argument) are inserted. The last argument of the addPhysicalMobileComponent operation is an
ordered list of attribute values, such as processor, available memory, maximum available storage and a
number of instances in the system. It should be taken into account that the addition of a new element into a
model version means the instantiation of a given modelling concept (which is part of the domain model in

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 76

Fig. 3). Thus, this fact implies the creation of a versionable object at repository level and an object version at
version level. Also, these design objects are associated to others at repository level, by including an instance
of association (Fig. 1) between them. In functional specifications of operations addRelationship command
express how these associations have to be accomplished.

As it can be observed, functional specifications give an outline of how the operations may be defined using a
computational tool. The employed syntax should be recognized by a computational tool based on the
proposed operations model (Fig. 4). Section 4 introduces an example of how TracED, a prototype that
implements the proposed operations model, allows the definition of these operations likeway.

addQualityRequirement(s, qr)
add(qr)
addRelationship(s, qr)

addScenario(qr, sce)
add(sce)
addRelationship(qr, sce)

addPhysicalMobileComponent(s, pc, lports,
lresps, {cpu-val, mem-val, storage-val,
instantes-val})
add(pc, {cpu-val, mem-val, storage-val,
instances-val})
for each p in lports
 addPort(pc, p)
end for
for each r in lresps
 addResponsibility(c,r)
end for
addRelationship(s, pc)

addPhysicalStationaryComponent(s, pc, lports,
lresps, {cpu-val, mem-val, storage-val})
add(pc, {cpu-val, mem-val, storage-val})
for each p in lports
 addPort(pc, p)
end for
for each r in lresps
 addResponsibility(c,r)
end for
addRelationship(s, pc)

addLogicalStationaryComponent(cont, c, lports,
lresps)
add(c)
for each p in lports
 addPort(pc, p)
end for
for each r in lresps
 addResponsibility(c,r)
end for
addHostedByRel(cont, c)

addLogicalMobileComponent(cont, c, lports,
lresps, type)
add(c)
for each p in lports
 addPort(pc, p)
end for
for each r in lresps
 addResponsibility(c,r)
end for
addTransientExecutionLocationRel(cont-c, cont,
c , {type, 0})

addPhysicalConnector(pc, role1, role2)
add(pc)
addRole(role1)
addRole(role2)
addRelationship(pc, role1)
addRelationship(pc, role2)

addLogicalConnector(lc, role1, role2, pcList)
add(lc)
addRole(role1)
addRole(role2)
addRelationship(lc, role1)
addRelationship(lc, role2)
for each pc in pcList
 addChannelRel(rel, lc, pc)
end for

addHostedByRel(c1, c2)
add(c1c2)
addRelationship(c1c2, c1)
addRelationship(c1c2, c2)

addTransientExecutionLocationRel(tel, cont, c,
attributes)
add(tel, attributes) // attributes order: type,
locationOrder
addRelationship(tel, cont)
addRelationship(tel, c)

addCanalisedByRel(r, lcnn, pcnn)
add(r)
addRelationship(r, lcnn)
addRelationship(r, pcnn)

Fig. 5. Specification of some basic operations.

Similarly, it is possible the definition of special operations (some examples are shown in Fig. 6). These
operations increase their abstraction level, so they need auxiliary functions to be specified. Functions do not
constitute architectural operations. They are mainly interactive functions that require the intervention of the
architect. For example the operation selectPort(c) asks the user to choose one port of a ports list, to do some
action with the selected one. Another sort of auxiliary functions are “get” functions. An example is
getResponsibilities(c), which collects all the responsibility-type object versions associated with a component c
in a specific model version. Such a function is part of an special operation called delegateResponsibility(c1,
c2). It enables to delegate a responsibility of component c1 to component c2. In a similar way, the operation
delegateScenario proceeds. As part of this group, the architect has also defined setLogicalConnector and

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 77

setPhysicalConnector, which permit not only to create a (physical or logical) connector object version, but
also to set the attachment with the components communicated by it. In addition, setLogicalConnector
includes a list of physical connectors as the last argument (pcnnList), which will act as the physical channels
for the logical connections.

setPhysicalConnector(pc, comp1, comp2)
addPhysicalConnector(pc, pc-role1, pc-role2)
p1 := selectPort(comp1)
p2 := selectPort(comp2)
setAttachment(att1, pc-role1, p1)
setAttachment(att2, pc-role2, p2)

setLogicalConnector(cnn, c1, c2, pcnnList)
addLogicalConnector(cnn, [cnn-r1, cnn-r2],
pcnnList)
c1-p := selectPort(c1)
c2-p := selectPort(c2)
setAttachment(cnn-r1, c1-p)
setAttachment(cnn-r2, c2-p)

setAttachment(role, port)
addRelationship(role, port)

delegateResponsibility(c1, c2)
lResps = getResponsibility(c1)
for each r in lResps
 if (delegate?(c2, r))
 addRelationship(c2, r)
 end if
end for

delegateScenario(c1, c2)
lScens = getScenario(c1)
for each s in lScens
 if (delegate?(c2, s))
 addRelationship(c2, s)
 end if
end for

Fig. 6. Specification of some special operations.

ApplyPattern operations encapsulate well known solutions for recurring design problems that arises in
specific design situations. Given that patterns are a means of documenting software architectures, the
execution of an applyPattern operation describes the vision the architect has in mind when designing a
software system (Buschmann et al., 1996). These operations apply an architectural pattern either refining a
component object version (and therefore, deleting this original component) into a new set of components and
connectors that are instantiated from a pre-existing style, or just adding a set of elements (i.e.: component and
connectors with their ports, responsibilities and roles) in order to create a new architectural configuration. Due
to the very high level of abstraction of applyPattern operations, they need to interact with the designer asking
about responsibilities and scenarios delegation, as well as how to attach connectors between external and new
components.

In Fig. 7, some operations that involve the application of architectural pattern are specified. The first one,
named applyThreeLayers, contains the semantic of the Layers pattern (Buschmann et al., 1996). It
decomposes an application into groups of subtasks in which each group of subtasks is at a particular level of
abstraction. In this case the operation is specified for three layers. This operation can be executed by an
architect during a software architecture design process, when his / her design decision is to create different
layers to deal with a specific aspect of the application and uses the services of the next lower layer. This
operation specified in Fig. 7 requires four arguments: the first argument is the component to be split in the
proposed layers; the following three arguments are the name of the layers to be added, which should be
ordered from the highest level to the lowest level layer. Each component layer object version is added by
means of an addLogicalStationaryComponent operation (which also creates and assigns a pair of ports) and
indicates in one argument which the host component is. In addition, the responsibilities of the original
component are delegated to new components using delegateResponsibilites operations, which interact with
the actor who executed the operation. Finally, applyThreeLayers asks the designer how to attach connectors
between external and refined components by means of a predefined interactive function (PortMap?).

ApplySynchronization operation (Fig. 7) encloses the semantic of a pattern suitable for mobile applications
(Roth, 2002), which deals with the problem of keeping synchronized two databases located on different
devices or computers, which are weakly connected. In this context, several users change some of the data on
different devices, often simultaneously; thus, data tends to be out of sync. This architectural pattern provides a
solution by including in the architecture a logical component that acts as a synch engine, in each device or
computer. As it is observed in Fig.7, arguments must be provided to indicate the logical stationary
components where both synch engines components are going to be located. As this kind of software
components do not concern directly to business logic, they can be included as part of a middleware layer.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 78

Therefore, the operation adds two logicalStationaryComponent objects and assigns to them a pair of
predefined ports and responsibilities. The responsibilities include exchanging the modifications or differences
occurred since the last synchronization (rDifferenceExchange), detection of potential conflicts
(rConflictDetection), and resolution of conflicts (rConflictResolution).

ApplyConnectionBroker (which is also specified in Fig. 7) encloses the semantic of the Information Broker
architectural pattern identified by Risi and Rossi (2004), who proposed a catalogue of architectural patterns
for mobility. The aim of the Connection Broker pattern is to manage and select the more suitable of two
possible connections from a component application to a database. A possibility is enabling the connection to
the main database that resides in a server, and the other is establishing a connection with a replica of such a
database. The replicated data base is a reduced version of the main data base and possibly is out of date. To
provide this decision capability to an architecture, an intermediary component (the Connection Broker) is
included by the applyConnectionBroker operation. This component is in charge of setting a suitable
connection to any of the databases for inserting/updating/recovering data, based on a set of rules that indicates
when a connection is convenient and when not.

applyThreeLayers(c1, l1, l2, l3)
host := getHostComponent(c1)
addLogicalStationaryComponent(host, l1, [p1,
p2])
addLogicalStationaryComponent(host, l2, [p3,
p4])
addLogicalStationaryComponent(host, l3, [p5,
p6])
addLogicalConnector(l1l2, [r1, r2])
addLogicalConnector(l2l3, [r3, r4])
setAttachment(p2,r1)
setAttachment(p3,r2)
setAttachment(p4,r3)
setAttachment(p5,r4)
delegateResponsibility(c1, l1)
delegateResponsibility(c1, l2)
delegateResponsibility(c1, l3)
lp = getPorts(c1)
for each p in lp
 np = PortMap?(p) // Ask the user the port to
map
 r = getRol(p)
 addRelationship(np, r)
end for
delete(c1)

applyConnectionBroker(c, appComp, [dest1,
dest2])
addLogicalStationaryComponent(c, broker, [b-p1,
b-p2, b-p3])
setLogicalConnector(b-lc1, broker, appComp)
setLogicalConnector(b-lc2, broker, dest1)
setLogicalConnector(b-lc3, broker, dest2)

applySynchronization(c1, c2, db1, db2)
addLogicalStationaryComponent(c1, syncEngine1,
[se1-p1, se1-p2])
addResponsibility(syncEngine1,
rDifferenceExchange)
addResponsibility(syncEngine1,
rConflictDetection)
addResponsibility(syncEngine1,
rConflictResolution)
addLogicalStationaryComponent(c2, syncEngine2,
[se2-p1, se2-p2])
addResponsibility(syncEngine2,
rDifferenceExchange)
addResponsibility(syncEngine2,
rConflictDetection)
addResponsibility(syncEngine2,
rConflictResolution)
setLogicalConnection(se1-db1, syncEngine1, db1)
setLogicalConnection(se2-db2, syncEngine2, db2)
setLogicalConnection(se1-se2, syncEngine1,
syncEngine2)

applyLogicalMobility(mComp, cont, {order})
addTransientExecutionLocationRel(mComp-cont,
cont, mComp,{“logical-mobility”, order})

applyPhysicalMobility(mComp, cont, {type,
order})
addTransientExecutionLocationRel(mComp-cont,
cont, mComp, {type, order})

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 49

Fig. 7. Specification of operations that apply architectural patterns.

Another architectural pattern is materialized in applyLogicalMobility operation (Fig. 7). The mechanism of
“logical code mobility” (Bieszczad and White, 2007; Fuggetta et al., 1998) should be applied in a situation
where replicas of certain computational unit are available in the local code repositories of two different
execution environments (physical components or hosts). This pattern incorporates in an architectural model
the behaviour that makes possible moving the execution of a code unit from one machine to other. In this
way, a replica of the executing unit running on the first machine is loaded from a local repository and
initialized with the transferred state to resume its execution. The arguments of applyLogicalMobility operation
are the unit code (logical mobile component) that will change its execution location, the next physical
component where this component will run, and the properties values that indicate the execution location order
assigned to this new location.

The specification of applyLogicalMobility operation comprises an addTransientExecutionLocationRel
operation. As a consequence, an object whose type is transientExecutionLocationRel is added. This object
relates the mobile component with the physical component that will temporally host it. Particularly, the type
property of the added object will receive the value of “Logical Mobility”. In this way, applyLogicalMobility
operation allows the designer to express in the architectural model the kind of code mobility that the future
system will support, as well as the locations in which a logical mobile component will be executed.

Similar operations for physical code mobility (Fuggetta et al., 1998) such as Remote Evaluation, Code on
demand, and Mobile Agent could be specified by assigning suitable property values. It should be noted that
the operation and domain packages (Fig. 4 and 1, respectively) allow us to define a particular design domain
suitable for the architect’s necessities and preferences. During the domain definition, the operations that the
architect will be able to use in the mobile architecture design process should be defined. The proposed model
is a first step towards the development of computational tools to support the design process.

3 Case Study

The case study describes the design process of the software architecture of a Sales Force Management
System. The system is intended to improve the efficiency of the sales representatives of an enterprise in the
field. They meet clients to promote and sell the company products making use of a local database suited in
their mobile devices and entering new orders. However, when connectivity with the company database server
is possible, the information must be gathered (sent) from (to) it. Obviously, the company database must
periodically be synchronized with the databases in each mobile device.

Functional requirements for such a system are the following:

i) Salespeople can place orders from different locations using their mobile devices, preferably in
real time (FunctionalRequirement_1).

ii) An order need to be validated. The application running in the salesperson mobile device has
features for checking the inventory levels of the ordered products and the client credit situation
(that controls if the clients have no debts with the company, their credit limits, and the possible
means of payment). To accomplish the order validation process, the mobile device needs to
connect to the company server, to get the client credit information and up-to-date inventory
information (FunctionalRequirement_2).

iii) Once an order has been validated and confirmed, it is incorporated to the company server
(FunctionalRequirement_3), in order to update the inventory levels and start its processing. A

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 50

new order in the system may imply the generation of a manufacturing order or the acquisition of
raw materials.

The software architecture of this mobile system must satisfy the aforementioned functional requirements and
some non-functional or quality requirements (Bass et al., 2003), which are described as follows:

i) It is possible to place an order even if there is no connectivity with the company server
(Availability_QR1). If the application that runs in a salesperson’s mobile device is not able of
reaching the company database, the order cannot be validated. Therefore, it is saved on the
database located at the mobile device, in “awaiting confirmation” state. This quality requirement
is known as Availability (Bass et al., 2003) or Reliability (ISO, 2001).

ii) When connectivity is re-established, the company database is synchronized with the mobile
databases to keep data updated, and, if it is possible, to change the status of orders from
“awaiting confirmation” to “confirmed” (DataFreshness_QR2).

iii) The system supports different sorts of mobile devices, which means that the processing
capability of the devices is not homogenous. Consequently, when the processing power and the
required memory of a device is not enough for executing some application features (such as the
ones related to order validation) it is possible run them on the company application server
(Performance_QR3). This quality requirement is called Performance (Bass et al. 2003) or
Efficiency (ISO, 2001).

The design process of the architecture for the introduced mobile system will be conducted by following the
ADD method; thus, it will be presented as a decomposition process, guided by architectural drivers. The
design decisions made by the architect (or designer) at each point of the design process are captured by a
sequence of operations, which is applied to a previous model version and generates a new software
architecture model version. In the present case study, the architect employs the design domain for mobile
architectures defined in the previous section.

The designer (an architect) begins with an empty root model version (Root Model Version), where he/she adds
the first object version that represents the system whose architecture is going to be built. Thus, the first model
version ModelVersion1 is obtained after applying the sequence of operations φ1 = {addSystem(SalesSystem)}.

Sequence of Operations φ1 for achieving ModelVersion1
addSystem(SalesSystem)

Then, the architect continues by identifying the requirements for the intended system. This means the
execution of a sequence of operations φ2, which comprises a series of addQualiyRequirement and
addFunctionalRequirement operations. As a consequence, functionalRequirement-type and
qualityRequirement-type objects are included giving rise to a new model version (ModelVersion2).

Sequence of Operations φ2 for achieving ModelVersion2
addQualityRequirement(SalesSystem, Availability_QR1)
addQualityRequirement(SalesSystem, DataFreshness_QR2)
addQualityRequirement(SalesSystem, Performance_QR3)
addFunctionalRequirement(SalesSystem, FunctionalRequirement_1)
addFunctionalRequirement(SalesSystem, FunctionalRequirement_2)
addFunctionalRequirement(SalesSystem, FunctionalRequirement_3)

During the design process the architecture is represented combining structural, behavioural and deployment
elements from different architectural views (Bass et al., 2003; ISO, 2008). The architect begins by adding the
object versions that represent the physical (stationary or mobile) components involved in the architecture,

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 51

which are going to act as the hosts of logical components. On the company main office, the system is
deployed on an application server and a database server. So, the architect adds two physical stationary
components: ApplicationServer and DataBaseServer. The software components responsible of the main
business logic will run on the first component (ApplicationServer), and the second will host the database and
data access services. As salespeople will carry their own mobile devices (SalesForceMobileClient) to query
the system and to generate orders, the architect includes instances of such devices in the new model version.
The φ3 sequence of operations is given in the next listing, which generates ModelVersion3.

Sequence of Operations φ3 for achieving ModelVersion3
addPhysicalStationaryComponent(SalesSystem, ApplicationServer, {‘Core2 T5200 1.60GHz’,’2Gb’,’160Gb’},
 [p1, p2,p3], [])
addPhysicalStationaryComponent(SalesSystem, DataBaseServer, {‘Xeon 3.20GHz’, ‘2Gb’, ‘120Gb’}, [p4], [])
addPhysicalMobileComponent(SalesSystem, SalesForceMobileClient, {‘Intel 312MHz 300Mhz’,’128Mb’,’2GB’, 20},
 [p5, p6], [])

Above sequence of operations includes addPhysicalStationaryComponent and addPhysicalMobileComponent
operations. Some argument values have to be provided to set the property values for created object versions.
These physical components are not isolated; they have to communicate with each other by means of different
physical connections. Thus, the architect decides that an Ethernet connection is suitable between the
ApplicationServer and DataBaseServer components. This decision is materialized by a setPhysicalConnector
operation execution. Another decision is to set two alternative and redundant physical connections between
the SalesForceMobileClient and the ApplicationServer. Both connections are wireless, but differ in the
communication protocol they use, 3G and WiFi. As a result of applying the φ4 sequence of operations,
ModelVersion4 is obtained.

Sequence of Operations φ4 for achieving ModelVersion4
setPhysicalConnector(WiFi, ApplicationServer, SalesForceMobileClient)
setPhysicalConnector(3G, ApplicationServer, SalesForceMobileClient)
setPhysicalConnector(Ethernet, ApplicationServer, DataBaseServer)

Fig. 8 illustrates the model evolution that takes place from applying the sequence of operations φ4 on
ModelVersion3, which adds the physical connectors between the mobile devices and the stationary
components. There, a series of setPhysicalConnector operations forms the sequence of operations φ4. The
intention of the architect is setting up the physical connections between the physical components in
ModelVersion3. As it was specified in Fig. 6, setPhysicalConnector implies both the addition of a new
connector-type object and its role-type objects, and the attachments to link the respective port-type objects.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 52

Fig. 8. Obtaining ModelVersion4 from ModelVersion3

At the top of Fig. 8, the inferred model is visualized, which is obtained from views of the versions level on the
repository. At versions level (Fig. 8), SalesSystemv1 (system-type object version) SalesForceMobileClient v1,
ApplicationServer v1 and DataBaseServer v1 (component-type object versions) belong both to ModelVersion3
and ModelVersion4 (ports are not shown for simplicity). At repository level, these design objects are
represented by SalesSystemvo, SalesForceMobileClientvo, ApplicationServervo, DataBaseServervo, respectively.
These objects are instances of versionable object (Fig. 1). As a consequence of the execution of
setPhysicalConnector operation, object versions for representing three physical connectors are added to
ModelVersion4 (3Gv1, WiFiv1, and Ethernetv1). Such object versions maintain a versionable object instance at
repository level. Moreover, associations between the included objects are maintained at repository level, like
the attachment associations between components (Fig. 8).

Afterwards, the software architecture continues evolving in a series of model versions, which arise as a result
of adding all the object versions necessary to represent the logical components involved in the software
architecture, their responsibilities and properties, and the connector-type objects that provide the
communication between them. Having laid out the physical configuration of the system in terms of the
physical components and connectors, logical components with a high level of abstraction that represent the
application to be developed are created and deployed in each physical component. On the one hand, a
ServerSideApp logicalStationaryComponent-type is added to ApplicationServer. On the other hand, a
MobileClientSideApp is created and deployed on the SalesForceMobileClient physical component. Then, a
logical component responsible of providing data services (DataServicesApp) is incorporated in
DataBaseServer physical component. These three components are added to the architecture providing
information about responsibilities, and leaving information about connection between them for a next step in
the design process. Therefore, the sequence of operation for achieving ModelVersion5 is detailed as follows.

Sequence of Operations φ5 for achieving ModelVersion5
addLogicalStationaryComponent(ApplicationServer, ServerSideApp,
 [SSA_UIResp, SSA_OrderAcceptResp, SSA_OrderValidationResp, SSA_DataQueryResp,
 SSA_SynchResp, SSA_CreditVerificationResp, SSA_InventoryManagementResp])
addLogicalStationaryComponent(SalesForceMobileClient, MobileClientSideApp,
 [MCSA_UIResp, MCSA_OrderAcceptResp, MCSA_OrderValidationResp,

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 53

 MCSA_DataQueryResp, MCSA_SynchResp])
addLogicalStationaryComponent(DataBaseServer, DataServicesApp,
 [DSA_ConnectionResp, DSA_UserValidationResp, DSA_DataBaseManagementResp])

At this point in the design process, the architect wants to add further decomposition to the system. The logical
components that will compose the architecture belong to different levels, where the high level elements rely
on the lower-level ones. Therefore, since a layered architecture is suitable to the intended architecture model,
the designer identifies three levels of abstraction. The higher layer contains logical components related to the
application itself. The next layer contains the middleware, which provides services transparently like database
synchronization and data routing through the most convenient connection. The lowest layer deals with data
access features. These decisions are materialized by the applying of a Layers pattern on two logical
components of the ModelVersion5 (ServerSideApp and MobileClientSideApp). Thus, the sequence of
operations φ6 reachs ModelVersion6, where logical components (layers) such as ServerApplicationLayer,
ServerMiddlewareLayer, ServerDataAccessLayer, MobileApplicationLayer, MobileMiddlewareLayer, and
MobileDataAccessLayer are created (Fig.9). As it can be observed from specification in Fig. 7,
ApplyThreeLayers is a refining operation as the original component is deleted from the resulting model
version. The current model version (ModelVersion6) is shown in Fig. 9 by using a deployment view.

Sequence of Operations φ6 for achieving ModelVersion6
applyThreeLayers(ServerSideApp, [ServerApplicationLayer, ServerMiddlewareLayer, ServerDataAccessLayer])
applyThreeLayers(MobileClientSideApp, [MobileApplicationLayer, MobileMiddlewareLayer, MobileDataAccessLayer])

Having organized the logical arrangement of logical components, the architect includes a set of component-
type objects. In the application layer of the mobile side of the architecture (Fig. 11), the designer includes:
UIManager, OrderReceiver, and OrderValidator logical components (and their ports). UIManager is in
charge of the user interface and accepting the user requests. OrderReceiver has responsibilities of processing
orders and queries of the user, and OrderValidator has responsibilities of checking order correctness, credit
situation and product inventory levels. Particularly, the responsibilities of the last component are CPU and
memory intensive. Therefore, given the constraints on these mobile devices resources, the architect foresees
the necessity of adding the component object version as an instance of LogicalMobileComponent design
object type. In this way, the applied sequence of operations φ7 on ModelVersion6, which generates
ModelVersion7, includes some addLogicalStationaryComponent and addLogicalMobileComponent
operations. Afterwards, to allow the interaction between these components logical connections are set to
achieve the functional requirements of the system.

Fig. 9. Deployment view of ModelVersion6

Sequence of Operations φ7 for achieving ModelVersion7
addLogicalStationaryComponent(MobileApplicationLayer, UIManager, [UI-p1],[])
addLogicalStationaryComponent(MobileApplicationLayer, OrderReceiver, [OR-p1, OR-p2, OR-p3, OR-p4, OR-p5],[])
addLogicalMobileComponent(MobileApplicationLayer, OrderValidator,[OV-p1, OV-p2, OV-p3],[])

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 54

Sequence of Operations φ8 for achieving ModelVersion8
setLogicalConnector(LC1, UIManager, OrderReceiver,[])
setLogicalConnector(LC2, OrderReceiver, OrderValidator,[])

Then, in a similar way, the architect adds analogous components in the application layer of the
ApplicationServer. This is made by using a series of addLogicalStationaryComponent, which forms the
sequence of operations φ9. As a result ModelVersion9 arises including three new
logicalStationaryComponent-type objects named OrderBusinessLogic, InventoryBusinessLogic, and
CreditBusinessLogic (Fig. 10). The first one is in charge of saving all coming orders and recovering existent
orders requested from devices and other applications. The second one has the responsibility of managing
products and stock (inventory) information. Some of the mentioned responsibilities could be delegated from
the container layer, whereas others could be passed as an argument. To simplify the case study, lresps
argument is left empty and it is assumed that the architect will carry out responsibility delegations in later
model versions. The next step is setting the logical connection between them (given a sequence of operations
φ10, which includes a series of setLogicalConnector operations). Fig. 11 shows the architecture layout at
application layer (client and server) by means of a C&C view.

Sequence of Operations φ9 for achieving ModelVersion9
addLogicalStationaryComponent(ServerApplicationLayer, OrderBusinessLogic, [OBL-p1, OBL-p2], [])
addLogicalStationaryComponent(ServerApplicationLayer, InventoryBusinessLogic, IBL-p1, [])
addLogicalStationaryComponent(ServerApplicationLayer, CreditBusinessLogic, CBL-p1, [])

Sequence of Operations φ10 for achieving ModelVersion10
setLogicalConnector(LC3, OrderReceiver, OrderBusinessLogic, [WiFi, 3G])
setLogicalConnector(LC4, OrderValidator, InventoryBusinessLogic, [WiFi, 3G])
setLogicalConnector(LC5, OrderValidator, CreditBusinessLogic, [WiFi, 3G])

Afterwards, ServerDataBaseManager is added to provide data access from components of the
ApplicationServer to the DataBaseServer, in a transparent way. Therefore, the architect executes an
addLogicalStationaryComponent indicating the component that hosts the new component (see sequence of
operations φ11). The resulting model version is ModelVersion11.

Sequence of Operations φ11 for achieving ModelVersion11
addLogicalStationaryComponent(ServerDataAccessLayer, ServerDataBaseManager, SDB-p1,[])

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 55

Fig. 10. Deployment view of ModelVersion11

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 56

Fig. 11. Logical connections between logical components

At this point in the design process, the architecture achieves part of the intended functional requirements
(FunctionalRequirement_1, FunctionalRequirement_2, FunctionalRequirement_3). Now, the architect
focuses on the needed quality requirements. Firstly, the Availability_QR1 requirement is regarded. This
requirement demands to the application to keep on working despite no connectivity with the main database.
Therefore, the solution is to include a temporal o minimal database located at the mobile device, to save
application data even whether connection with the remote server application is not possible. Additionally, the
mobile application should be able to decide how to route the generated orders (controlling the flow of the
application business logic). On the other hand, the database redundancy makes it necessary some
synchronization mechanism to maintain updated the company database.

Therefore, the architect’s design decision is to provide further granularity to mobile-side application by
adding two new component object versions. At application layer, a component responsible for a limited
business logic (named MinimalOrderBussinessLogic), and at data access layer, a component to manage the
access to a reduced local database (named LocalDataBaseManager). This is materialized in the sequence of
operations φ12, which applied on ModelVersion11 generates ModelVersion12.

Sequence of Operations φ12 for achieving ModelVersion12
addLogicalStationaryComponent(MobileApplicationLayer, MinimalOrderBusinessLogic, [MOB-p1, MOB-p2, MOB-p3], [])
addLogicalStationaryComponent(MobileDataAccessLayer, LocalDataBaseManager, [LDB-p1], [])

Fig. 12 shows a partial view of ModelVersion12 and its inferred model. This figure illustrates a fragment of
the design process. At the top of it, partial views of the inferred model versions are represented, making use of
a mix of structural and deployment view. There, three consecutive model versions are presented
(ModelVersion12, ModelVersion13 and ModelVersion14). In ModelVersion12, two object versions of
components can be observed (MinimalOrderBusinesLogic v1 and LocalDataBaseManager v1) as well as the
hostedByRel-type objects that indicate where they are located (MDBA_LDDBMv1, MAL_MOBL v1).
ModelVersion13 is generated from ModelVersion12 by applying the sequence of operations φ13. The applied
operations set the logical connections among logical components situated at SalesForceMobileClient. LC6
(between OrderReceiver and MinimalOrderBusinesLogic) is an internal communication between components
belonging to the same layer. LC7 logical connector (between MinimalOrderBusinesLogic and
LocalDataBaseManager) represents the communication between components belonging to adjacent layers.
These new connectors also have a double representation at repository level (given by LC6vo and LC7vo
versionable objects) and at versions level (given by LC6v1 and LC7v1 object versions).

Sequence of Operations φ13 for achieving ModelVersion13
setLogicalConnector(LC6, OrderReceiver, MinimalOrderBusinessLogic, [])
setLogicalConnector(LC7, MinimalOrderBusinessLogic, LocalDataBaseManager, [])

<<logicalStationaryComponent>>
UIManager

<<logicalStationaryComponent>>
OrderReceiver

<<logicalMobileComponent>>
OrderValidator

<<logicalStationaryComponent>>
OrderBusinessLogic

<<logicalStationaryComponent>>
InventoryBusinessLogic

<<logicalStationaryComponent>>
CreditBusinessLogic

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 57

12 Inferred Model

<<system>>
SalesSystem

Versions

LC6 V1

LC7 V1

Broker V1
B_ORV1

B_OBLV1

B_MOBLV1 MML_B V1

Model Version 13
Model Version 14

LocalDataBaseManagerV1

MDBA_LDDBMV1

Model Version 12

MAL_MOBL V1

MinimalOrderBusinessLogicV1

φ13= {setLogicalConnector(LC6,
OrderReceiver,
MinimalOrderBusinessLogic,[]);
setLogicalConnector(LC7,
MinimalOrderBusinessLogic,
LocalDataBaseManager,[])}

φ14= {applyConnectionBroker(
MobileMiddlewareLayer,
OrderReceiver,
[MinimalOrderBusinessLogic,
OrderBusinessLogic]) }

Repository

Domain

<<physicalMobileComponent>>
SalesForceMobileClient

<<logicalStationaryComponent>>
MobileApplicationLayer

<<logicalStationaryComponent>>
MobileDataAccessLayer

<<logicalStationaryComponent>>
LocalDataBaseManager

<<logicalStationaryComponent>>
MinimalOrderBusinessLogic

13 Inferred Model

<<system>>
SalesSystem

<<physicalMobileComponent>>
SalesForceMobileClient

<<logicalStationaryComponent>>
MobileDataAccessLayer

<<logicalStationaryComponent>>
MobileApplicationLayer

<<logicalStationaryComponent>>
MinimalOrderBusinessLogic

<<logicalStationaryCo….>>
OrderReceiver

14 Inferred Model

<<system>>
SalesSystem

<<physicalMobileComponent>>
SalesForceMobileClient

<<physicalStationaryComponent>>
ApplicationServer

<<logicalStationaryComponent>>
MobileApplicationLayer

<<logicalStationaryComponent>>
MobileMiddlewareLayer

<<logicalStationaryComponent>>
MobileDataAccessLayer

<<logicalStationaryComponent>>
ServerApplicationLayer

<<logicalStationaryComponent>>
MinimalOrderBusinessLogic

<<logicalStationaryComponent>>
Broker

<<logicalStationaryComponent>>
OrderBusinessLogic

<<logicalStationaryC…>>
LocalDataBaseManager

MobileApplicationLayerVO

MinimalOrderBusinessLogicVO

MobileDataAccessLayerVO
OrderBusinessLogicVO

OrderReceiverVO

MAL_MOBLVO

BrokerVO

LC6VO LC7VO

B_OBLVO

B_MOBLVO

MobileMiddlewareLayerVO

LogicalConnector LogicalStationaryComponent HostedByRel LogicalStationaryComponent

LocalDataBaseManagerVO

MDBA_LDDBMVO

MML_BVO B_ORVO

<<logicalStationaryCo….>>
OrderReceiver

LC6

LC7

BOR

B_OBL

B_MOBL

LC7

Fig. 12. Model evolution from ModelVersion12 to ModelVersion14

The next step in the design process is to apply the ConnectionBroker pattern to include elements of the logic
of the application. ApplyConnectionBroker operation (Fig. 7) pursues Availability_QR1 requirement. The
operation arguments are OrderReceiver component (Fig. 12) and the two alternative components with it could
communicate: MinimalOrderBusinessLogic (a local component) or OrderBusinessLogic (a remote
component). The first argument is the component that hosts the broker component. Particularly, in this
software architecture model, the broker is located in the MobileMiddlewareLayer component object. The

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 58

Broker component and a set of responsibilities that enable it to determine the logical path to follow, based on
a set of policies or rules, are added.

Sequence of Operations φ14 for achieving ModelVersion14
applyConnectionBroker(MobileMiddlewareLayer, OrderReceiver, [MinimalOrderBusinessLogic, OrderBusinessLogic])

The applyConnectionBroker operation specifies that the Broker object is going to be located at the
MobileMiddlewareLayer by including a hostedByRel-type object that relates them (MML_Bv1 at versions level
and MML_Bvo at repository level, Fig. 12). Additionally, a set of logicalConnector-type object is present in
ModelVersion14 in order to communicate the broker component with the application layer components that
require its services (located both at the mobile client and at the application server). They are B-MOBL, B-OR,
B-OBL. As it can be observed, the versioning scheme represents all incorporated objects at repository level
(given by Broker vo, MML_Bvo, B-MOBLvo, B-ORvo, B-OBLvo objects) and at versions level (given by Broker

v1, MML_B v1, B-MOBL v1, B-OR v1, B-OBL v1 object versions).

As it was mentioned previously, some mechanisms are necessary to synchronize the databases, in order to
satisfy the DataFreshness_QR2 quality requirement. Therefore, the architect considers applying the
Synchronization pattern (Fig. 7). The first two arguments of this operation are the component-type object
versions where both synchronizing engines (logical components) are going to be located. Also, the two last
argument values are the component-type objects that represent the databases to synchronize
(ServerDataBaseManager and LocalDataBaseManager). The sequence of operations φ15 comprises an
applySynchronization operation as follows.

Sequence of Operations φ15 for achieving ModelVersion15
applySynchronization(ServerMiddlewareLayer, MobileMiddlewareLayer, ServerDataBaseManager,
 LocalDataBaseManager)

An unachieved quality requirement is Performance_QR3. The designer decides that the way of achieving it is
allowing the mobile devices to delegate the execution of CPU and memory consuming tasks on the company
server. OrderValidator (logical mobile component) is identified as a component that develops processing
intensive activities, which it is hosted in SalesForceMobileClient, more specifically in the
ServerApplicationLayer. Even though OrderValidator runs on SalesForceMobileClient another possible
physical location where the OrderValidator may run should be provided. By executing the
applyLogicalMobility operation a new possible executing location is assigned, thus obtaining ModelVersion16
Fig. 13 shows the ModelVersion16, wich employs a deployment view (Fig. 13 - a) and a C&C view (Fig. 13 -
b) to illustrate the architectural model. It explains the logical connections among logical components situated
at adjacent layers.

Sequence of Operations φ16 for achieving ModelVersion16
applyLogicalMobility(OrderValidator, ServerApplicationLayer, 1)

At this point in the design process, the architect should analyse and evaluate if all the main requirements of
the architecture have been considered.

4 TracED

TracED is a research prototype that implements the proposed model to capture and trace software
architectural designs. It has been developed using Java language, MySQL database, and Hibernate
framework. The major tools are Domain Editor and Versions Manager (Roldán et al., 2008). Both tools were
developed based on the object-oriented models proposed in previous sections.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 59

Fig. 13. a) Deployment view of ModelVersion16. b) C&C view of ModelVersion16.

The Domain Editor enables the definition of a design domain. A partial view of a software architecture
domain for mobile systems defined by using TracED, is visualized in Fig. 14. Modelling concepts are
organized hierarchically in a tree structure (upper-left corner of Fig. 15). Each concept can have zero or more
descendents and a unique parent. This structure is obtained by specializing modelling concept (Fig. 1) in
abstract and concrete modelling concepts. Abstract concepts generalize common properties and relationships
used by a set of design objects. For example, Requirement generalizes Quality and Functional Requirement
modelling concepts, and Connector generalizes PhysicalConnector and LogicalConnector (Fig. 14). Also,

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 60

Component is specialized in a hierarchy of special components, defining four concrete modelling concepts:
LogicalMobileComponent, LogicalStationaryComponent, PhysicalMobileComponent and
PhysicalStationaryComponent. Domain Editor allows the user to set binary relationships between modelling
concepts, which are instances of DomainRelationship (Fig. 1).

Fig. 14. Partial view of Domain Model for Mobile Software architectures in TracED

Fig. 15 shows the specification window of the LogicalMobileComponent. In Properties tab, a concept
description can be assigned, and properties (like name and type) can be created and modified. In Fig 15,
Operations tab is active, where a set of operations applicable to the current modelling concept can be
specified. In the case of LogicalMobileComponent, the architect has defined addLogicalMobileComponent
and deleteLogicalMobileComponent operations. The definition of a new operation means the instantiation of
the Operations Model (Fig. 4). As LogicalMobileComponent has been defined as a subconcept of Component,
it inherits the operations defined by this abstract concept, such as delegateResponsibility.

The window in Fig. 16 shows the definition of addLogicalMobileComponent that is similar to the functional
specification presented in Fig. 5. To define it, the architect selects some of the available operations from the
combo box situated on the right. The VariableAssignment between an input argument value or a previous
result and the argument of another operation sub-command is carried out by matching them one to one (Match
Arguments button). In this way, VariableAssignment instances are created, which bind input argument values
or previous results and arguments of other sub-commands. The binding of arguments (variables) and their
values (which are unknown at the moment of the specification) are set beforehand for the execution of the
macrocommand. Also, addLogicalMobileComponent has a loop command as part of its body, which is
defined over a ports collection. It allows assigning the ports to the new component one by one by using the
addPort operation (see the window at the bottom of Fig. 16).

The other main component of TracED, Versions Manager, enables the execution of design projects. When a
new design project is created, an existent domain is selected for it. A project is carried out working with the

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 61

Version Manager window, by executing the available domain operations, which include new design objects
as instances of the modelling concepts defined in the selected design domain.

Fig. 15. Specification of Logical Mobile Component Modelling Concept

Fig. 16. Specification of the addPhysicalMobileComponent MacroCommand

To show how TracED is used to develop and capture a design process, part of the presented case study is
carried out. The new project is called SalesForceManagementProject. An instance of DesignProject (Fig. 1)
is created and associated with the domain for mobile software architecture, which it was described in sections
2.1 and 2.2 and was specified in TracED by using Domain Editor. By doing that, the initial model version
(Root Model Version) is generated. Root Model Version is the root of the tree structure of the version
management scheme and it does not have object versions and cannot be edited. Fig. 17 shows the Version
Manager window, with the first model version of SalesForceManagementProject project, named SalesSystem,
which was added by an addSystem execution (sequence of operations φ1, as it was described in the case study
of the previous section). On the upper-left of this window appears the “model versions tree” navigator. To
create a new model version, the predecessor model version must be selected. The model version that arises
from applying a sequence of operations φ2 is shown as in the snapshot in Fig. 17, which includes the
functional and quality requirements for SalesSystem.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 62

Fig. 17. First two model versions of SalesForceManagementProject

Following in this way, the rest of the case study is developed with the support provided by TracED. This
prototype allows users to systematize the capture of each new model version, the object versions that belong
to them, and the architectural operations that originated them.

Moreover, TracED allows the architect to recover the history of a given model version. He/she can query, for
example, which is the predecessor model version of a given model version, and all its object versions. By
selecting a model version from the model version navigator panel, it is possible to see what happened over
time. Fig. 18 shows fragments of the History Window, which informs all operations that have been applied
from the root (initial model version) to a selected model version. In this window, it is also possible to see
detailed information about each applied operation. For instance, the moment when an operation was applied,
who the actor involved was and the names assigned to new object versions (successor object versions). In this
case, the architect queries about how ModelVersion15 was obtained. At the bottom of Fig. 18, it is informed
that an addSystem operation has been applied on Root Model Version to generate ModelVersion1. At the top
of ModelVersion1, the sequence of operations that generates ModelVersion2 is depicted. In a similar way, the
window informs all the model versions generated to reach the requested one. Thus, moving the focus to the
top of Fig. 18, it is observed that the operation executed on ModelVersion14 was applySynchronization,
which gave rise to ModelVersion15.

Due to its prototypical status, TracED currently has some limitations. On the one hand, TracED just provides
some predefined queries for asking the model about the history of a design project, like the one presented in
Fig. 18. However, the incorporation of new features for creating and executing queries is easy, as the
information on which the queries find the answers has already been captured by the model and no additional
extension is needed in that direction. On the other hand, TracED lacks of appropriated views to present an
architectural model through different view points of view types (IEEE, 2000; Clements et al., 2002). Further
work is necessary to achieve this goal. Despite its limitations, TracED has allowed us to verify the viability of
the proposed models.

φ2

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 63

Fig. 18. A history window of ModelVersion15.

To improve the usability of TracED, it should work in an integrated way with CASE tools that support other
design activities. In this way, TracED would perform the capture of all applied operations, by working in
background mode, without designer noticing it. By using the features of the Operations Model (Fig. 4), new
and higher level of abstraction operations could be specified for the CASE tool, which will be available for
being included in the CASE tool menus.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 64

5 Related Works

Recently, there has been proposed several approaches for representing architectural design decisions. They
aim to assist software architects in their decision-making activities by capturing and characterizing
architectural knowledge. Most of these tools are based on conceptual o semi-formal models, which provides a
characterization and interpretation of SADP, and what their authors considers that is important to capture.

Tyree and Akerman (2005) have proposed a template of attributes to represent architectural design decisions,
which extends the documentation of design decisions described in Clements et al. (2002). Such an approach
allows the designers documenting some critical evolutions of SADP. The approach discussed in Capilla et al.
(2007) is similar, but instead of providing a complete list of attributes to describe a design decision, they
propose the use of mandatory and optional attributes that can be tailored according to different needs for
making more agile the efforts of capturing a design decision. In addition, they include specific attributes and
relationships aimed to support the evolution of design decisions. Archium is a tool that models design
decisions and their relationships with resulting components (Jansen et al., 2007). It is based on a conceptual
model for representing architectural design decisions and their context, which allows keeping the evolution of
an architecture design by keeping architectural deltas (changes). The perspective employed in this approach is
different from ours since the design decisions are not explicitly captured; they remain as tacit knowledge.
Hence, the tacit knowledge embedded in the captured design is used to trace back from the changes to the
decisions they originated from (Jansen et al. 2008). Contrary to this perspective, our approach captures the
design decisions by materialising them in a sequence of operations that is applied on the current model
version. In this way, the design decisions are captured “during” the SADP and not “after”. The Architecture
Rationale and Elements Linkage (AREL) approach, models architecture design as causal relationships
between design concerns, decisions and outcomes (Tang et al., 2007). Ali Babar and Gorton (2007) propose
another framework for the capture and recover of architecture knowledge called Process-centric Architecture
Knowledge Management Environment (PAKME). PAKME uses a data model for characterising architectural
constructs (such as design decisions, alternatives, rationale, and quality attributes), their attributes and
relationships. Each design decision is captured as a case along with rationale and contextual information using
a template.

In spite of the fact that most of them support the notion of design decisions, none of the aforementioned
approaches represent design decisions as concrete executions of design operations as our approach does. In
addition the proposed versioning administration model provides the elements to capture the operations
together with their results (successor object versions). This integrated capture of products and operations
avoids the designer the need of setting explicitly the relation among architectural elements and architectural
decisions. Moreover, none of the existent proposals for representing architectural design decisions address the
particularities of software architecture design of mobile systems. In general, they are intended for generic
domains and are hard to extend to more specific design domains. Although some contributions (Ali et al.,
2008; Lopes et al., 2002; Medvidovic and Mikic-Rakic, 2001; Schäfer, 2006) propose the fundamental
architectural building blocks and methods for modelling software architectures for dynamic mobile
environments, they hardly support the designers in developing, documenting and evolving mobile software
architectures.

6 Conclusions

Software architectures for mobile systems demand tools for managing the different versions generated during
their design process. Many ADLs support the static description of a system, but most of them provide no
facilities for specifying architectural changes. Mobility-specific ADLs are not the exception. These factors
lead to problems like knowledge vaporization, given that just the final artefact is kept and the design decisions
made by the involved architects are lost. Consequently, there is an urgent need of tools able to capture and
manage this process. In this contribution, we propose a model that employs an operational approach, which
allows expressing and capturing each architectural decision as a design operation. Therefore, designs are
captured by introducing a minimal impact on the design activities performed by architects. This feature

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 65

establishes a distinction from contributions that propose documenting the architectural design process after
completing (part of) it.

The proposed model supports mobility concerns and it is flexible enough to make it possible the definition of
the fundamental architectural building blocks and particular operations suitable for the architect’s necessities
and preferences. This definition allows to represent the several methods for modelling software architectures
in dynamic mobile environments and to capture processes that follow the defined methods. Furthermore, our
proposed model allows to specify operations in a goal-oriented way, indicating which is the pursued goal by a
given operation execution. In such a way, explicit associations between the applied operations, their results,
and the achieved architectural requirements could be captured and recovered.

Acknowledgements

The authors wish to acknowledge the financial support received from CONICET, Universidad Tecnológica
Nacional and Agencia Nacional de Promoción Científica y Tecnológica (25/O118, PAE – PICT 2007 - 02315,
IP-PRH 2007).

References

Ali Babar, M., Gorton, I. (2007). A tool for managing software architecture knowledge. In: Proceedings of the
Second Workshop on SHAring and Reusing architectural Knowledge Architecture, Rationale, and Design
Intent.

Ali, N., Millán, C., Ramos, I. (2006). Developing mobile ambients using an aspect-oriented software
architectural model. Lecture Notes in Computer Science, Springer, Vol. 4276, pp. 1633-1649.

Ali, N., Ramos, I., Carsi, J. (2005). A conceptual model for distributed aspect-oriented software architectures.
In: Proceedings of the International Conference on Information Technology: Coding and Computing, Vol.
2, pp. 422-427.

Ali, N., Solís, C., Ramos, I. (2008). Comparing architecture description languages for mobile software
systems. In: Proceedings of the 1st international Workshop on Software Architectures and Mobility
(Leipzig, Germany). SAM '08. ACM, New York, NY, pp. 33-38.

Bass, L., Clements, P., Kazman, R. (2003). Software architecture in practice, 2nd Edition. Addison-Wesley,
Boston.

Bieszczad, A. , White, T. (2007). Code Mobility and Mobile Agents. In: Bellavista, P., Corradi, A. (Eds.), The
Handbook of Mobile Middleware, Auerbach Publications, New York.

Burge, J., Carroll, J., McCall, R., Mistrík, I. (2008). Rationale-Based Software Engineering. Springer-Verlag.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. (1996). Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. John Wiley & Sons.

Capilla, R., Nava, F., Tang, A. (2007) Attributes for characterizing the evolution of architectural design
decisions, in Proceedings of the Third International IEEE Workshop on Software Evolvability, IEEE CS,
15–22.

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R. (2002). Documenting Software
Architectures: Views and Beyond. Pearson Education.

Field, Z., Dewar, R., Trinder, P., Du Bois, A. R. (2006). Two executable mobility design patterns: mfold and
mmap. In: Proceedings of the 2006 Conference on Pattern Languages of Programs (Portland, Oregon,
October 21 - 23, 2006). PLoP '06. ACM, New York, NY, pp. 1-11.

Fuggetta, A., Picco, G. P., Vigna, G. (1998). Understanding Code Mobility. IEEE Transactions on Software
Engineering 24(5), 342-361.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 66

Garlan, D., Monroe, R.T., Wile, D. (2000). Acme: architectural description of component-based systems. In:
Leavens, G.T., Sitaraman, M. (Eds.), Foundations of Component-Based Systems. Cambridge University
Press, pp. 47-68.

Georgas, J., van der Hoek, A., Taylor, R. (2005). Architectural runtime configuration management in support
of dependable self-adaptive software. In: Proceedings of the 2005 workshop on Architecting dependable
systems, pp. 1-6.

Gonnet, S., Leone, H., Henning, G. (2007). A model for capturing and representing the engineering process.
Expert Systems with Applications, 33(1), 881-902.

IEEE (2000). IEEE 1417:2000, Recommended Practice for Architectural Description of Software-Intensive
Systems, IEEE Press.

ISO (2001). ISO/IEC 9126-1, Software Engineering – Product Quality, Part1: Quality Model.

ISO (2008). ISO/IEC JTC1/SC7, Recommended Systems and software engineering. Architectural description,
ISO/IEC WD2 42010.

Jansen, A., Bosch, J., Avgeriou, P. (2008). Documenting after the fact: Recovering architectural design
decisions. Journal of Systems and Software 81, 536-557.

Jansen, A., van der Ven, J., Avgeriou, P. Hammer D. (2007). Tool support for Architectural Decisions. In:
Proceedings of the Sixth Working IEEE/IFIP Conference on Software Architecture (WICSA 2007), pp.
44-53

Kruchten, P., Lago, P., van Vliet, H. (2006). Building up and reasoning about architectural knowledge. In:
Proceedings of the Second International Conference on the Quality of Software Architectures.

Lima, E. F., Machado, P. D., Sampaio, F. R., Figueiredo, J. C. (2004). An approach to modelling and
applying mobile agent design patterns. SIGSOFT Software Engineering Notes 29 (3), 1-8.

Lopes, A., Fiadeiro, J.L., Wermelinger, M. (2002). Architectural Primitives for Distribution and Mobility. In:
Proceedings of 10th Symposium on Foundations of Software Engineering. ACM Press, pp. 41-50.

Medvidovic, N., Mikic-Rakic, M. (2001). Exploiting Software Architecture Implementation Infrastructure in
Facilitating Component Mobility. In: Proceedings of the Software Engineering and Mobility Workshop
(Toronto, Canada, May).

Medvidovic, N., Mikic-Rakic, M., Mehta, N. R., Malek, S. (2003). Software Architectural Support for
Handheld Computing. IEEE Computer 36 (9), 66-73.

Mikic-Rakic, M., Malek, S., and Medvidovic, N. (2008). Architecture-driven software mobility in support of
QoS requirements. In: Proceedings of the 1st international Workshop on Software Architectures and
Mobility (Leipzig, Germany), SAM '08. ACM, New York, NY, pp. 3-8.

Risi, W. A., Rossi, G. (2004). An architectural pattern catalogue for mobile web information systems.
International Journal of Mobile Communications 2(3), 235-247.

Roldán, M.L., Gonnet, S., Leone, H. (2006). A model for capturing and tracing architectural designs. In: IFIP
IWASE 2006. Springer. Vol. 219, pp. 16-31.

Roldán, M.L., Gonnet, S., Leone, H. (2008). A Tool for Capturing and Tracing the Software Architecture
Design Process. In: Proceedings of the XXXIV Conferencia Latinoamericana de Informática (CLEI 2008),
Santa Fe, Argentina, ISBN 978-950-9770-02-7, pp. 380-389.

Roman, G., Picco, G., Murphy, A. (2000). Software Engineering for Mobility: A Roadmap. In: Proceedings
of the International Conference on Software Engineering, Future of SE Track (Limerick, Ireland), pp. 241-
258.

Roth, J. (2002). Patterns of Mobile Interaction. Personal Ubiquitous Computing 6 (4), 282-289.

Schäfer, C. (2006). Modeling and Analyzing Mobile Software Architectures. Lecture Notes in Computer
Science, Springer, Vol. 4344, pp. 175 – 188.

M. L. Roldán et al., A model for capturing the SA design process of mobile systems, EJS 9(1) 67-97 (2010) 67

Tang, A., Jin, Y., Han, J. (2007). A rationale-based architecture model for design traceability and reasoning.
Journal of Systems and Software, 80, 918–934.

Tyree, J., Akerman, A. (2005). Architecture decisions: demystifying architecture. IEEE Software 22 (2), 19-
27.

Westfechtel, B., Conradi, R. (2003). Software Architecture and Software Configuration Management. Lecture
Notes in Computer Science, Springer, Vol. 2649, pp. 24-39.

Westfechtel, B. (1999). Models and tools for managing development processes. Lecture Notes in Computer
Science, Springer, Vol. 1646.

