
Performance Evaluation of MQTT Broker Servers Deployed in

the Cloud

Evaluación de Desempeño de Servidores Supervisores MQTT Instalados en

la Nube

Fernando Pazos

Technology and Administration Department. National University of Avellaneda.
Mario Bravo 1460, Piñeyro, B1868, Buenos Aires, Argentina.

fapazos@undav.edu.ar

Abstract. Communication between devices on a network requires the use of protocols. On
internet there are well known protocols that can be used both in the architecture of a server with
multiple clients as well as in a machine to machine (M2M) communication. In Internet of Things
(IoT) applications, network communication can be supervised by a server denoted as broker, and
the most widely used application layer protocol for this purpose is MQTT (Message-Queuing
Telemetry Transport). This paper compares the performance of eight publicly available MQTT
brokers deployed in the cloud in three experiments under different stress conditions. The goal
is to choose the most suitable broker to be used in the communication between a Cubesat-type
nanosatellite and the land terminal.

Resumen La comunicación entre dispositivos en una red exige el uso de protocolos. En internet
hay protocolos muy conocidos que pueden ser usados tanto en la arquitectura de un servidos
con múltiples clientes como en una comunicación máquina a máquina (M2M). En aplicaciones
de Internet de las Cosas (IoT), la comunicacíın en una red puede ser administrada por un servi-
dor denominado supervisor, y el protocolo más ampliamente usado en la camada de aplicación
con este propósito es MQTT (Message-Queuing Telemetry Transport). Este art́ıculo compara
el desempeño de ocho servidores supervisores instalados en la nube disponibles publicamente en
tres experimentos bajo diferentes condiciones de exigencia. El objetivo es elegir el supervisor más
adecuado para ser usado en la comunicación entre un nanosatélite del tipo Cubesat y el terminal
de Tierra.

Keywords: Internet of Things · MQTT protocol · MQTT brokers

1 Introduction

The present work is part of a larger project implemented by a consortium of Argentine universities
that aims to place a Cubesat-type nanosatellite in Earth’s orbit. One of the objectives of this project
is to promote a space laboratory for the provision of Internet of Things (IoT) services. In particular,
the National University of Avellaneda is responsible for the study and recommendation of the most
suitable On-Board Computer (OBC) for use in IoT, as well as the study of all the relevant aspects
about the communication between the nanosatellite and the land terminal (see [15] for details).

A crucial issue to be resolved in order to put a nanosatellite into orbit is to establish reliable com-
munication with the Earth terminal. An on-board computer (OBC) must store information collected
by the sensors installed on the satellite and send it whenever requested by a client. As the connection
time is only a few minutes per day according to the orbital period, the OBC must store all the data
collected daily and send it securely during the connection time. This issuance is carried out via the
internet [15].

Internet of Things (IoT) applications connect many different types of devices on an internet network,
which are able to share information without any human-to-human or human-to-computer interaction.

Received January 2024; Accepted March 2024; Published May 2024

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 117

ISSN 1514-6774



This technology is growing exponentially around the world, and every day more objects are manufac-
tured with internet connection capabilities; it is estimated that today there are 26 billion devices with
some internet connection system and this number will reach 74.44 billion by 2025 [8, 17].

There exist several architectures for connecting an IoT device with another device, either client or
server. In the present project a machine-to-machine (M2M) communication between the satellite and
the land terminal, which must receive and store the data sent for further analysis, must be implemented.

There are different communication protocols for the transmission of data in IoT and M2M systems.
At the network layer, communication protocols may include LoRaWAN, SigFox, Cellular/4G/5G,
Zigbee, Zwave, WiFi and NFC technologies. In IoT applications based on the TCP/IP model at the
transport layer, there are many application layer protocols available to select for various needs of
IoT systems. Some of the most commonly used include CoAP (Constrained Application Protocol),
AMQP (Advanced Message Queuing Protocol), XMPP (Extensible Messaging and Presence Protocol)
and HTTP (Hypertext Transfer Protocol). However, in M2M communication the most widely used is
MQTT (Message-Queuing Telemetry Transport) [20, 2, 9].

Fig. 1 shows some internet communication protocols at different layers.

Fig. 1: Some of the most used communication protocols on the internet

MQTT protocol was created and released by IBM in 1999. It is based on the asynchronous publish-
ing/subscribing topology of small messages, tipically of a few bytes, which makes this protocol suitable
for connecting remote devices. Some of the advantages of using MQTT include [25, 4]:

– It is asynchronous with different levels of quality of service, which is important in cases where the
internet conection is not reliable.

– It is suitable for applications with low bandwidth because it is designed to send very short messages.
– It does not require much software to implement a client terminal. It can be implemented with

an extremely lightweight code so it can be deployed on microcontrollers and devices having limi-
ted processing capabilities and memory such as Arduino, Raspberry Pi, among other low-power
machines.

– It can send encrypted data and can use credentials to protect the messages sent.

This protocol is widely used in a number of industries such as automotive, oil and gas among many
others as well as in healthcare, home automation, etc. (see details in [20, 2, 4, 25, 9]).

1.1 The MQTT protocol

The implementation of a communication network using MQTT as application layer protocol requires
the control and management by a back-end server on the internet. This server is denoted as broker.
The broker is responsible for receiving and delivering messages sent by the clients connected to the
network. The architecture of the network managed by the broker is a star configuration. The clients
connected to the broker play subscriber and publisher roles. The publishers send messages on a topic

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 118

ISSN 1514-6774



head to the broker, which delivers them to the subscribers that have previously subscribed to that topic
[25]. Topics can be considered as the subject of the message. Of course, communication is bidirectional,
so the clients that publish in a topic can be subscribed to other topics, thus receiving the messages
published by other clients. The maximum message size supported by MQTT is 256 MB.

The message format is ’topic’:’payload’, where

– Topic: “key”or identification of the message published. The topic name is an UTF-8 encoded string
used to deliver the message to the clients subscribed to it.

– Payload: string containing the message itself formatted as an array of characters.

The topic can have subtopics (separated by a forward slash) in a hierarchical structure. For example

• “Home/Bedroom/DHT22/temperature”

Subscribers can subscribe to an individual topic or a set of subtopics using “wildcards” [4]. There
exist two wildcards, a single-level one ’+’, and a multi-level one ’#’. For example, a client who subscribes
to the topic

• “Home/+/DHT22/temperature”

will receive all the messages sent by the publishers with four subtopics where the first, third and fourth
ones are “Home”, “DHT22” and “temperature”, respectively.

A client who subscribes to the topic

• “Home/Kitchen/#”

will receive all the messages sent by the publishers where the two first subtopics are “Home” and
“Kitchen”. Of course, both wildcards can be used in a topic. For exemple

• “Home/+/DHT22/#”

The client who subscribes to this topic will receive all the messages where the first and the third
subtopics are “Home” and “DHT22”, respectively.

Fig. 2 shows a simplified star scheme of the publisher/subscriber model, where a temperature sensor
publishes the measured data with the topic “temperature”; two clients subscribed to this topic receive
the message.

MQTT runs on a TCP/IP transport layer socket using ports 1883 for non-encrypted communication
and 8883 for encrypted communication using SSL/TSL (Transport Security Layer) connection.

MQTT supports 14 types of messages, where the most commonly used are CONNECT, DISCON-
NECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE. Table 1 (extracted from [4]) shows them. The type of
message is specified in the four first bits of the first byte of the header.

MQTT supports three levels of quality of service (QoS) to ensure message transport realibility both
from the publishers to the broker as well as from the broker to the subscribers. These levels of quality
of service are described as follows [4, 13].

– QoS 0 (At most once, or “fire and forget”): Messages are sent at most once and it does not provide
guarantee delivery of a message. The sender sends the message and does not store it. The receiver
does not acknowledge its receiving. Messages can be lost; there is no retransmission.

– QoS 1 (At least once): Messages are sent at least once. The sender sends a message and expects
to receive an acknowledgment from the receiver (a PUBACK packet). If the receiver does not
acknowledge receipt, or the message is lost, the sender resends the message by setting the value of
the duplicate flag in the header by 1, until acknowledgment is achieved.

– QoS 2 (Exactly once): Messages are sent exactly once by using 4-way handshaking (see description
in [18, p. 4]). Clients and server exchange the packets PUBREC, PUBREL and PUBCOMP in order to
ensure the message reception. This is the slowest of all the levels and increases the communication
load but is the best option when message duplication is not allowed.

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 119

ISSN 1514-6774



Fig. 2: Example of the publisher/subscriber configuration

Table 1: Messages supported by the MQTT protocol

Control packet direction of flow description fields added to the header

CONNECT Client to server Client request to connect to server several

CONNACK Server to client Connect acknowledgment none

Client to server
PUBLISH or Publish message TOPIC+PAYLOAD

Server to client

Client to server
PUBACK or Publish acknowledgment none

Server to client

Client to server

PUBREC or
Publish received

none

Server to client
(assured delivery part 1)

Client to server

PUBREL or
Publish release

none

Server to client
(assured delivery part 2)

Client to server

PUBCOMP or
Publish completed

none

Server to client
(assured delivery part 3)

SUBSCRIBE Client to server Client subscribe request TOPIC

SUBACK Server to client Subscribe acknowlegdment none

UNSUBSCRIBE Client to server Unsubscribe request TOPIC

UNSUBACK Server to client Unsubscribe acknowledgment none

PINGREQ Client to server Ping request none

PINGRESP Server to client Ping response none

DISCONNECT Client to server Client is disconnecting none

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 120

ISSN 1514-6774



Other parameters to be set when using the MQTT protocol include

• keep alive interval: maximum time for which a client must publish a message or to send a PING
request to the broker in order not to be disconnected from the network. This value is set by the
client in the CONNECT packet.

• retain-flag : in a PUBLISH packet, this flag indicates whether the broker should store a message for
delivery to clients that later subscribe to that topic.

• SSL certificate: indicates whether the communication is encrypted using the TLS (Transport Layer
Security) protocol.

• last will and testament : topic and payload that can be published by a client when connected. The
payload is delivered to the clients subscribed to this topic when the connection with the sender is
lost (because no requests were sent to the broker during the keep alive interval). Typically, the will
warns other clients that the connection with the sender has been lost unexpectedly.

Fig. 3 shows the structure of a message.

Fig. 3: Structure of a MQTT message showing the header, the topic and the payload

More information about the MQTT protocol can be found in [4, 2, 18, 25, 26].

1.2 MQTT Brokers

There exists a number of publicly available MQTT brokers with very diverse configurations and
features. In [3] some of them are listed.

Some brokers require registration and credentials (username and password) must be provided for
connection. Some of them are deployed in the cloud, and clients only have to connect to use their
service, whereas others require the installation of a software on a local server which will be used as
broker to manage the communication between clients. Some of them present a dashboard on a web
page where all the messages received and delivered by the broker are printed. Some brokers allow the
clients to establish encrypted communication with an SSL/TLS certificate, whereas others do not. The
use of some of these brokers is free, others are not.

There exist many studies comparing the efficiency of the MQTT protocol in IoT applications
against that presented by other protocols (see, for example [22, 27]). Also, many works compare the
performance of several MQTT brokers under different conditions (see [16–18] and references therein).

Next, we report a few relevant articles presented in the literature.

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 121

ISSN 1514-6774



In [17] the authors presents a very complete work where the properties and features of various
MQTT implementations, i.e. brokers and libraries currently available in the public domain are com-
pared. An exhaustive report on the literature on research involving the MQTT protocol is also pre-
sented.

In [12] seven brokers are analyzed from a security point of view by performing a DoS attack and
information gathering techniques on the broker. The the vulnerability of each one is compared and in
order to find out the least vulnerable broker that can be used for secure communication between IoT
devices. The broker tested are Mosca, HBMQTT, VerneMQ, Apache ActiveMQ, HiveMQ, RabbitMQ and
Eclipse Mosquitto.

In [13] the performances of wired and wireless networks using the broker mosquitto are analyzed.
The system environment is a wired/wireless net with a publisher client, a broker server and a subscriber
client. The performance is measured as the end-to-end delays and as the message loss as a function of
the three levels of QoS and the size of the payload (up to 16 Kb).

In [18] the performances of six brokers (mosquitto, active-MQ, hivemq, bevywise, verneMQ, and emqx)
are evaluated in terms of message processing rates and under different stress conditions. The tests are
designed to analyze their message handling capability, the robustness of implementation, and efficient
resource use potential by sending a high volume of short messages (low payload) with a limited set of
publishers and subscribers. The performances are quantified in terms of [18, s. 2.4]

• Latency : it denotes the time the service takes to acknowledge a sent message, or the time the service
takes to send a published message to its subscriber. Latency can also be defined as the time taken
by a messaging service to send a message from the publisher to the subscriber.

• Scalability : it is the ability to scale up with the increase in load without an observable change in
latency or availability. The main strategies for scalability are clustering and bridging.

• Availability : it usually refers to the ability of the system to handle a different type of failure in such
a manner that is unobservable at the customer’s end.

In [16] the performances of MQTT brokers under basic domestic use condition are compared. In this
work two experiments are carried out. In the first one a Raspberry Pi board publishes analogical data
and a local computer receives the information. The performances of three MQTT brokers deployed in
the cloud are compared by measuring the mean latency. In the second test five MQTT brokers are
deployed in a local computer wich also plays the role of subscriber. Another local computer is used as
publisher. The performances of the brokers are compared by measuring the mean latency as a function
of the QoS and the size of the payload.

The present study aims to test the performance of the services offered by some brokers, such as the
transmission reliability and the response time, in order to determine the most suitable to be applied
in the communication between a nanosatellite and the land terminal.

A total of twenty brokers available on internet were tested, but as they present very different
configurations and in order to test under the same conditions, we choose those that meet the follow-
ing criteria: being free, being deployed in the cloud, and allowing M2M communication without the
mandatory use of a dashboard on a web page1.

The brokers chosen were:

– saas.theakiro.com [1]
– mqtt.flespi.io [6]
– test.mosquitto.org [19]
– broker.hivemq.org [10]
– mqtt.fluux.io [7]
– broker.emqx.io [5]
– broker.mqttdashboard.com [21]

1 It is important to highlight that in the communication between a satellite and the land terminal the broker
does not necessarilly have to be deployed in the cloud. This service can be performed by a local terminal.

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 122

ISSN 1514-6774



– ioticos.org [11]

Some of these brokers are scalables, which means that they can increase the capacity of the service
with the increase in load. The strategies for expanding the service are [4, 18]:

• clustering: ability to share the service across several servers or cores. This is the solution of Ac-
tiveMQ, HiveMQ and RabbitMQ..

• bridging: the messages are delivered to other brokers when the processing time exceeds a maximum
limit. This is the solution of HiveMQ, Mosquitto, IBM MQ.

For example hivemq and emqx are scalables, whereas akiro is not.

In this work, the results obtained from three experiments carried out under different conditions are
presented in order to quantify the performance of the eight MQTT brokers chosen. The performance
evaluation considers the latency (time elapsed between the delivery of a message and its reception), the
reliability (ability to deliver all received messages, without message loss), and the regularity (ability to
handle all the messages with similar delays). The goal is to determine the most suitable broker to be
used in the communication between a nanosatellite and the land terminal.

The main contribution of the present work is to compare the performance of some brokers not
mentioned in the references cited (such as ioticos and akiro) making the appropriate tests for the
project for which the selected broker will be used. This work is a revised and extended version of the
short paper [24].

2 Experimental results

In this section, the results of three experiments carried out in order to quantify the performance of
the brokers selected are presented.

The experiments used a WiFi internet connection of 5 GHz, with ping of 53ms and 54mbps and
78mbps of download/upload speed, respectively.

In all the test performed, a local computer executes a VCL application specially developed for
these tests using the RAD Studio 10.2 IDE. The MQTT protocol has been provided using TMS
MQTT components [26] in the script. Fig. 4 shows the screen of the application.

2.1 First test: jitter evaluation

The first test aims to reproduce the project framework, i.e. an IoT device sending data to a land
terminal. The IoT board publishes analogical temperature values on a topic head and a local computer
is subscribed to this topic. The IoT device publishes 100 strings at predetermined intervals of 100ms,
500ms, and 1000ms, respectively.

The temperature sensor used is the TMP36. This sensor is able to measure temperatures between
−40◦C and 125◦C and has an output scale factor of 10mV/◦C.

A NodeMCU v.1 board will be used as IoT device. It is based on the ESP8266 microcontroller,
which allows WiFi connections at 2.4 GHz with 802.11 b/g/n protocol. Its A/D converter supports
input signals between 0V and 3.3V and has a resolution of 10 bits.

The subscriber is a Dell Inspiron 5557 computer with processor Intel(R) Core(TM) i7-6500U CPU
@ 2.50GHz, 8GB of RAM memory, and a 64 bits Windows 10 Pro as operating system.

Fig. 5 shows the layout of the system used in this test.
The MQTT protocol on the IoT board is provided by the library Pubsubclient.h 2.8 [23]. This

library has been specially developed for using on small boards such as Arduino, Raspberry Pi, among
other boards wuth limited processing capability and memory resources. This is very simple to use.
Clients can publish QoS 0 messages and can subscribe at QoS 0 or QoS 1. The maximum message size,
including the header is 256 bytes (although it is configurable). It supports last will and testament, and

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 123

ISSN 1514-6774



Fig. 4: Application executed by the computer in the tests performed

Fig. 5: System layout in the first and second tests

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 124

ISSN 1514-6774



allows to set the retain flag and to configure the keep alive interval (which is 15 seconds by default).
In this first test we use QoS 0, port number 1883 and no testament.

In this experiment, the computer first publishes a message indicating the required transmission
interval (100ms, 500ms, or 1000ms) followed by a start command. Once the IoT board receives these
messages, it starts to publish 100 temperature measurements at the specified intervals.

Due to the asynchrony between the internal clocks of the clients, it is not possible to obtain an
accurate latency value. Instead, the time between the messages received (denoted as jitter in [14]) is
measured. This is not affected by the asynchrony between the clients, since we take as the reference
clock only one of them, namely the subscriber client clock [14].

Table 2 shows the results obtained in this test.

Table 2: Test 1. Mean time between messages reception and standard deviation for each transmission interval
[ms]

time interval [ms] 1000 500 100
mean std mean std mean std

saas.theakiro.com 1000.8 185.87 500.99 26.52 392.08 55.57

mqtt.flespi.io 1001.2 188.47 501.12 18.02 102.22 119.45

test.mosquitto.org 1001.1 18.50 501.01 15.62 100.89 110.7

broker.hivemq.org 1000.9 13.84 500.97 10.90 103.11 116.95

mqtt.fluux.io 1001 11.35 500.89 13.03 101.43 77.34

broker.emqx.io 1001.11 7.79 500.9 10.74 190.41 178.79

broker.mqttdashboard.com 1000.9 10.53 500.97 15.74 102.19 114.86

ioticos.org 1001.5 90.12 500.25 67.84 101.4 48.06

In this test there was no message loss. Regularity in the message reception indicates the broker’s
ability to handle messages at these intervals, which in turn indicates the reliability of the communication
between the board and the local client. With the smallest transmission interval, 100ms, some brokers
like mqttdashboard seem to block sometimes, so they present large standard deviations. The broker
fluux presents the smallest standard deviation on average in the three intervals tested.

With illustrative purposes, Fig. 6 shows the times elapsed between the reception of twenty five
messages with transmission rates of 100ms, 500ms and 1000ms respectively.

2.2 Second test: mean latency between an IoT board and a client

In the second test the latency presented by the brokers will be measured. With this purpose, the
computer publishes 100 short messages at predetermined intervals on a topic head. The IoT board
receives the messages and simply republishes them on another topic head, which the computer is
subscribed to. Latency is measured as the time elapsed from the publication of the message to its
reception by the computer. Note that asynchrony between both of the clients is irrelevant in this
context.

The devices and the system layout are the same that those used in the first test and shown in Fig.
5.

The publication intervals also are 100ms, 500ms, and 1000ms. The test will be carried out as a
function of the QoS with which the computer will publish and receive the messages, while the IoT
board will continue to use QoS 0.

The payload of the messages are

message n. #n◦

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 125

ISSN 1514-6774



75 80 85 90 95

number of message

0

100

200

300

400

500

600

e
la

p
s
e
d
 t
im

e
 b

e
tw

e
e
n
 m

e
s
s
a

g
e
s
 [
m

s
]

Test 1. Elapsed times between messages. T=100ms

dashboard

emqx

flespi

fluux

hivemq

ioticos

mosquitto

akiro

75 80 85 90 95

number of message

350

400

450

500

550

600

e
la

p
s
e
d
 t
im

e
 b

e
tw

e
e
n
 m

e
s
s
a
g
e

s
 [
m

s
]

Test 1. Elapsed times between messages. T=500ms

dashboard

emqx

flespi

hivemq

ioticos

mosquitto

fluux

akiro

5 10 15 20 25

number of message

700

750

800

850

900

950

1000

1050

1100

1150

1200

e
la

p
s
e
d
 t
im

e
 b

e
tw

e
e
n
 m

e
s
s
a
g
e
s
 [
m

s
]

Test1. Elapsed times between messages. T=1000ms

dashboard

emqx

flespi

fluux

hivemq

ioticos

mosquitto

akiro

Fig. 6: Elapsed times between the last twenty five received messages published by the IoT board in the first
test every 100ms (top), the last twenty five messages and transmission rate of 500ms (middle) and the first
twenty five messages and transmission rate of 1000ms (bottom)

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 126

ISSN 1514-6774



so they have from 12 to 14 characters, depending on the number of digits of the message number. The
other parameters are the same that those used in the former test.

Table 3 shows the results obtained in this test.

Table 3: Test2. Mean latency (top rows) and standard deviation (bottom rows) for each publication interval
and each QoS [ms]. X: system collapse.

QoS QoS 0 QoS 1 QoS 2
time interval [ms] 1000 500 100 1000 500 100 1000 500 100

37544 74698 105100 35569 71290 96813 31957 66659 94927
saas.theakiro.com

18084 30955 27985 17874 27611 38708 17317 32379 38810

552.78 552.73 1242.4 547.15 558.05 8474.5 612.07 1601.1 11902
mqtt.flespi.io

15.18 24 305.15 18.67 16 4802 256.45 625.11 7460

544.06 552.62 1424.4 507.07 685.63 7845 778.8 932.99
test.mosquitto.org

186.1 173.75 605.12 15.27 455.49 4419 19.2 113.71
X

501.74 508.3 1177.2 512.41 530.39 7178.4 518.26 550.04 1067.5
broker.hivemq.org

16.65 15.01 284.01 19.09 15.57 4084.6 23.57 238.36 6523.8

383.78 373.27 974.18 368.46 380.05 3989 398.86 357.17 7217.8
mqtt.fluux.io

143.35 18.49 272.83 19.24 26.94 2120 180.31 24.61 4278.9

568.87 575.67 11005 579.75 562.49 8392 568.41 1858 11734
broker.emqx.io

21.38 14.20 14513 19.12 13.98 4880.9 14.19 762.25 7284

569.57 579.35 1128.8 559 594.69 8103.3 568.12 845.04 11029
broker.mqttdashboard.com

124.70S 29.83 291 23.25 221.3 4564.4 15.1 186.18 6845.1

393.35 410.21 762.9 218.6 173.2 932.83 126.66 269.68 751.1
ioticos.org

898.75 794.4 472.64 307.56 204.60 661.73 17.27 376.139 490.06

The broker akiro presented the largest end-to-end delays.

When the elapsed time is greater than the publication interval, it increases monotonically with the
message number because the messages accumulate in the queue waiting to be processed by the broker,
both when the computer sends the message to the IoT board and when the IoT board returns the
message back to the computer. For example, with the broker hivemq, QoS 1, T=100ms, the delays
between the messages 17 and 23 were 2371 2522 2686 2866 2986 3122 3255 [ms].

With QoS 2 and transmission interval equal to 100ms, the broker mosquitto collapsed.

Sometimes, some brokers temporarily block. This implies an increment of the standard deviation.
For example, with the broker ioticos, QoS 0 and T=500ms, the message 41 took 4487ms, a much
greater value than the average presented by this broker in this test (410.21ms).

Fig. 7 shows the delays presented by the brokers tested with interval equal to 500ms. The plots of
the broker akiro are not shown because its minimum elapsed times were 4883ms, 3558ms and 4592ms
for each QoS respectively. Note that with QoS 2, the brokers that cannot process the delivery of
messages in a time less than the transmission interval have monotonically incresing delays on average.

Fig. 8 shows the minimum, mean and maximum elapsed times presented by the brokers tested for
each transmission interval and each QoS used. Also here, the bars corresponding to the broker akiro
are not shown because its delays were greater than those plotted.

The broker ioticos, althought sometimes blocks, presents the smallest mean latency. The broker
fluux has more regularity presenting the smallest standar deviation on average.

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 127

ISSN 1514-6774



10 20 30 40 50 60 70 80 90 100

number of message

100

200

300

400

500

600

700

800

900

1000

e
la

p
s
e
d
 t
im

e
 [
m

s
]

Test 2. Elapsed time [ms] for each message sent by the brokers tested. 

QoS 0, T=500ms

akiro

flespi

mosquitto

hivemq

fluux

emqx

dashboard

ioticos

10 20 30 40 50 60 70 80 90 100

number of message

200

400

600

800

1000

1200

1400

1600

1800

2000

e
la

p
s
e
d
 t
im

e
 [
m

s
]

akiro

flespi

mosquitto

hivemq

fluux

emqx

dashboard

ioticos

Test 2. Elapsed time [ms] for each message sent by the brokers tested. 
QoS 1, T=500ms

10 20 30 40 50 60 70 80 90 100

number of message

500

1000

1500

2000

2500

3000

e
la

p
s
e
d
 t
im

e
 [
m

s
]

Test 2. Elapsed time [ms] for each message sent by the brokers tested. 

QoS 2, T=500ms

akiro

flespi

mosquitto

hivemq

fluux

emqx

dashboard

ioticos

Fig. 7: Elapsed times of the messages published in the second test every 500ms and QoS 0 (top), QoS 1 (middle)
and QoS 2 (bottom)

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 128

ISSN 1514-6774



ak
iro

fle
sp

i

m
os

qu
itt
o

hi
ve

m
q

flu
ux

em
qx

m
qt

td
as

hb
oa

rd

io
tic

os
0

500

1000

1500

2000

2500

3000

e
la

p
s
e
d
 t
im

e
 [
m

s
]

Test 2. Maximum, minimum and mean values of the elapsed times [ms] 

for each broker tested. T=1000ms

QoS0

QoS1

QoS2

ak
iro

fle
sp

i

m
os

qu
itt
o

hi
ve

m
q

flu
ux

em
qx

m
qt

td
as

hb
oa

rd

io
tic

os
0

500

1000

1500

2000

2500

3000

e
la

p
s
e
d
 t
im

e
 [
m

s
]

Test 2. Maximum, minimum and mean values of the elapsed times [ms] 

for each broker tested. T=500ms

QoS0

QoS1

QoS2

ak
iro

fle
sp

i

m
os

qu
itt
o

hi
ve

m
q

flu
ux

em
qx

m
qt

td
as

hb
oa

rd

io
tic

os
0

0.5

1

1.5

2

2.5

3

3.5

4

e
la

p
s
e
d
 t
im

e
 [
m

s
]

10
4

Test 2. Maximum, minimum and mean values of the elapsed times [ms] 

for each broker tested. T=100ms

QoS 0

QoS 1

QoS 2

Fig. 8: Minimum, mean and maximum elapsed times of the messages published in the second test with trans-
mission intervals of 1000ms (top), 500ms (middle) and 100ms (bottom) for each QoS tested

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 129

ISSN 1514-6774



2.3 Third test: mean latency between a client and itself

In this test the latency presented by the brokers will be measured independently of the speed of
response of the IoT board, which will not be used in this test. For that reason, the local computer will
be publisher and also subscriber, so it must subscribe the topic to which it publishes the messages.
Fig. 9 shows the system layout used in this test.

Fig. 9: System layout used in the third test

The latency will be measured as the end-to-end delay between the transmission and the reception
of a message. The measurements will be made as a function of the QoS. The transmission intervals
will be the same that those used in the two former tests. The payload also is the same that the used
in the second test, as well as the other parameters.

Table 4 shows the results of this test.

The results obtained in this test are not significantly different from those obtained in the second
test, except for the fact that the mean latencies are lower than those presented in the former test. It
was expectable, because in this test the messages are not sent to the IoT board, the path taken is from
the computer to the broker and back to the computer.

Here again the broker mosquitto collapsed when QoS 2 and transmission interval equal to 100ms
were used. The broker emqx lost 15 messages when QoS 0 and interval equal to 100ms were used.

Here again, the broker ioticos presented the smallest mean latency, while the broker fluux presented
the smallest standard deviation on average.

3 Conclusions

The measurements obtained in the test performed allow us to reach some important conclusions.
The brokers saas.theakiro.com and broker.emqx.io presented higher latency than their competitors.

The latter lost data when subjected to a slightly increased stress condition.
In all the tests carried out here, the smallest latency was presented by the broker ioticos.org. Even

when messages accumulate in the queue, this broker is the fastest one to process them. This broker is
not tested in any of the references cited, which is a contribution of the present study.

The broker mqtt.fluux.io presented the smallest standard deviation on average, which means that
it is the one that more regularly handles the data transmission.

The broker ioticos.org requires the use of credentials, for which users must sign up. It also has the
particularity of providing a root topic when a project node is created in the web page. The topic of
all the messages sent by the publishers and all the topics subscribed by the subscribers in the network

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 130

ISSN 1514-6774



Table 4: Test3: Mean latency (top rows) and standard deviation (bottom rows) for each publication interval
and each QoS [ms]. X: system collapse. L.D.= lost data.

QoS QoS 0 QoS 1 QoS 2
time interval [ms] 1000 500 100 1000 500 100 1000 500 100

1185.7 1397.7 31035 1194.8 11421 35168 1174.4 14381 32598
saas.theakiro.com

51.05 7292.8 18185 104.09 6381 19027 63.23 7888 17927

290.77 295.1 908.2 321.63 292.71 8474 297.86 1662 11741
mqtt.flespi.io

12.17 53.90 288.87 14.23 13.31 4965 12.95 774.46 7332

277.85 287.93 880.75 286.56 279 7642 551.66 1056
test.mosquitto.org

12.95 13 288.55 17.48 13.82 4439 17.79 313.95
X

313.02 308.89 907.07 294.93 302.69 8758 297.99 1703.4 1178
broker.hivemq.org

14.37 12.32 285.67 13 13.66 5109 11.76 807.42 7375

203.77 204.86 748.03 190.58 202.99 3935.5 213.16 224.95 8682.1
mqtt.fluux.io

12.77 11.98 266.69 14.83 12.77 2195 15.18 16 4865

301.2 302.02 917.81 321.2 429.76 7974 423.1 549.15 11038
broker.emqx.io 10.54 10.96 298.82 16.81 88.26 4666 86.43 135.52 6906

L.D.=15

309.68 297.29 906.21 302.88 312.35 9050 329.57 1846 12110
broker.mqttdashboard.com

15.55 14.78 299.36 25.84 14.54 5279 20.14 904.33 7603

71.25 87.08 546.07 92.67 93.1 542.79 79.1 72.74 540.75
ioticos.org

10.82 17.09 276.85 16.78 14.78 277.88 12.09 12.68 276.23

must begin with this root topic. Of course, subtopics can be added at the end of the root topic. Using
the root topic prevents devices outside the network from exchanging messages with devices used in the
project.

Unlike the test carried out in [14, 13, 16], here we are not interested in evaluating the performance
of the brokers as a function of the payload size, because in our application the messages sent by the
nanosatellite to the land terminal will be short strings containing data measured.

As a future work we propose to perform tests closer to the real need for communication with
a nanosatellite, for example using the sensors that will effectively be used in the project and the
transmission interval necessary to send all the data collected daily during the short connection time.

References

1. Akiro: saas.theakiro.com. Available at https://www.akiroio.com/ (2022), last accessed October 3, 2022
2. Banks, A., Gupta, R.: MQTT version 3.1.1. Oasis standard. http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html (2014)
3. Chilukuri, R.T.: Public brokers. Available at https://github.com/mqtt/mqtt.org/wiki/public brokers (2021)
4. Crespo, E.: Aprendiendo arduino. MQTT. Available at https://aprendiendoarduino.wordpress.com/2018/11/19

/mqtt/ (2018)
5. Emqx: broker.emqx.io. An open-source, cloud-native, distributed MQTT broker for IoT. Available at

https://www.emqx.io/, last accessed October 3, 2022
6. Flespi: mqtt.flespi.io. MQTT broker. Available at https://flespi.com/mqtt-broker, last accessed October 3,

2022
7. Fluux: mqtt.fluux.io. Available at https://flespi.com/mqttbroker, last accessed October 3, 2022
8. Gubbia, J., Buyyab, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A vision, architec-

tural elements, and future directions. Future Generation Computer Systems 29(7), 1645–1660 (2013).
https://doi.org/10.1016/j.future.2013.01.010

9. Gupta, P., Indhra Om Prabha, M.: A survey of application layer protocols for internet of things. In: 2021
International Conference on Communication information and Computing Technology (ICCICT). pp. 1–6
(2021). https://doi.org/10.1109/ICCICT50803.2021.9510140

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 131

ISSN 1514-6774



10. Hivemq: broker.hivemq.com. Available at https://www.hivemq.com/downloads/, last accessed October 3,
2022

11. Ioticos: ioticos.org. Available at https://www.ioticos.org, last accessed October 3, 2022
12. Kotak, J., Shah, A., Shah, A., Rajdev, P.: A comparative analysis on security of MQTT bro-

kers. In: Proceedings of the 2nd Smart Cities Symposium (SCS 2019). pp. 1–5. Bahrain (2019).
https://doi.org/10.1049/cp.2019.0180

13. Lee, S., Kim, H., Hong, D., Ju, H.: Correlation analysis of MQTT loss and delay according to QoS level.
In: Proceedings of the International Conference on Information Networking (ICOIN). Bangkok, Thailand
(2013). https://doi.org/10.1109/icoin.2013.6496715

14. Luzuriaga, J.E., Cano, J.C., Calafate, C., Manzoni, P., Perez, M., Boronat, P.: Handling mobility in IoT
applications using the MQTT protocol. In: Proceedings of the 2015 Internet Technologies and Applications
(ITA). pp. 245–250. Wrexham, UK (September 2015). https://doi.org/10.1109/ITechA.2015.7317403

15. Mayer, R., D’Angiolo, F., Caporaletti, G., Contreras, D., Perez, H., Collado, F., Loiseau, M.: Estudio y
recomendación de computadoras de abordo para Cubesat. Tech. report, Technology and Administration
Department. National University of Avellaneda, Avellaneda, Argentina (2022)

16. Mishra, B.: Performance evaluation of MQTT broker servers, Lecture Notes in Computer Science, vol.
10963, pp. 599–609. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-95171-
3 47

17. Mishra, B., Kertesz, A.: The use of MQTT in M2M and IoT systems: a survey. IEEE Access 8 (2020).
https://doi.org/10.1109/ACCESS.2020.3035849

18. Mishra, B., Mishra, B., Kertesz, A.: Stress-testing MQTT brokers: A comparative analysis of performance
measurements. Energy 14(18) (2021). https://doi.org/10.3390/en14185817

19. Mosquitto: test.mosquitto.org. MQTT broker. Available at http://test.mosquitto.org/, last accessed October
3, 2022

20. MQTT: The standard for IoT messaging. Available at https://mqtt.org/
21. MqttDashboard: broker.mqttdashboard.com. Available at http://www.mqtt-dashboard.com/, last accessed

October 3, 2022
22. Naik, N.: Choice of effective messaging protocols for iot systems: MQTT, CoAP, AMQP and

HTTP. In: 2017 IEEE International Systems Engineering Symposium (ISSE). pp. 1–7 (2017).
https://doi.org/10.1109/SysEng.2017.8088251

23. O’Leary, N.: Pubsubclient: Arduino client for MQTT. Available at
https://github.com/knolleary/pubsubclient (2020)

24. Pazos, F.: Performance evaluation of MQTT broker servers deployed in the cloud. In: Memorias De Las
JAIIO. vol. 9 (2023), available at: https://ojs.sadio.org.ar/index.php/JAIIO/article/view/638

25. Soni, D., Makwana, A.: A survey on MQTT: A protocol of Internet of Things (IoT). In: Proceedings of the
International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT).
Chennai, India (2017)

26. TMS: MQTT software. Developer guide. Available at https://download.tmssoftware.com/Download/Manuals
/TMSMQTTDevGuide.pdf (2020)

27. Yokotani, T., Sasaki, Y.: Comparison with HTTP and MQTT on required network resources for IoT.
In: 2016 International Conference on Control, Electronics, Renewable Energy and Communications (IC-
CEREC). pp. 1–6 (2016). https://doi.org/10.1109/ICCEREC.2016.7814989

Pazos et al Performance Evaluation of MQTT Broker Servers Deployed in the Cloud, EJS 23 (1) 2024 pg 117-132 132

ISSN 1514-6774


