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Abstract 
 

Gene regulatory networks (GRNs) represent dependencies between genes and 
their products during protein synthesis at the molecular level. At the present there 
exist many inference methods that infer GRNs form observed data. However, 
gene expression data sets have in general considerable noise that make 
understanding and learning even simple regulatory patterns difficult. Also, there is 
no well-known method to test the accuracy of inferred GRNs. Given these 
drawbacks, characterizing the effectiveness of different techniques to uncover 
gene networks remains a challenge. The development of artificial GRNs with 
known biological features of expression complexity, diversity and 
interconnectivities provides a more controlled means of investigating the 
appropriateness of those techniques. In this work we introduce this problem in 
terms of machine learning and present a review of the main formalisms that have 
been used to build artificial GRNs. 
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1 Introduction  
 
 
A crucial objective of functional genomics is the study of the role of genes in the DNA (Deoxyribonucleic 
Acid) as protagonist “actors” during the initial mechanism of protein synthesis. How does the sequence of a 
strand of DNA (a gene) correspond to the amino acid sequence of a protein? This concept is explained by the 
central dogma of molecular biology, which states that DNA is transcribed into mRNA (messenger 
Ribonucleic Acid) and then, mRNA is translated into a protein, as shown in Figure 1. 
 

 
 

Fig. 1. Protein synthesis scheme. 
 
However, how each gene impacts on (regulates) the synthesis of each protein remains unknown, and therefore 
the problem of discovering the gene regulation interactions constitutes a great challenge. From the joining of 
these interactions emerges a gene network that represents the whole regulation mechanism of the organism. 
 
In this context, bioinformatics plays an essential role in the development of algorithms that enables the 
reconstruction of gene networks. Nowadays, this problem is being tackled with several machine learning 
strategies, achieving different degrees of success [1]. However, some drawbacks are being found as these 
strategies evolve. First of all, most of them begin the studies from data sets that are sometimes scarce, as large 
amounts of information are needed to accomplish reliable results. Also, this information generally contains noise 
that makes it difficult to perform the inference methods.  
 
All of these negative aspects gave rise to a new tendency that follows the idea of building artificial GRNs 
(aGRNs) as a means of acquiring sufficient reliable data. In this sense, aGRNs can be used for validation 
purposes. It is important to remark that, in the present, there is no literature review on the main methods that are 
being employed to build aGRNs. The rest of the article is organized as follows: in section 2, a detailed 
explanation of the problem of gene regulation is presented; later, the main machine learning approaches 
developed to infer GRNs are described; in section 4 aGRNs are introduced and the state of the art in this area is 
reviewed; finally, conclusions are put forward.   
 
 
2 Regulatory network’s inference  
 
 
An organism’s genetic information is stored in one or more distinct DNA molecules; each called a chromosome. 
All of the genetic information of an organism, taken together as a whole, is referred to as its genome. The 
primary role of nucleic acids is to carry the encoding of the primary structure of proteins. Each non-overlapping 
triplet of nucleotides, called a codon, corresponds to a particular amino acid, which in turn groups with other 
amino acids to construct a particular protein.  
 
DNA contains a large amount of information in addition to the coding sequences of proteins. Every cell in the 
body has the same DNA, but each cell type has to generate a different set of proteins, and even within a single 
cell type, its needs change throughout its life. An increasing number of DNA signals that appear to play a role in 
the control of expression are being characterized. There are a variety of signals identifying where proteins begin 
and end, where splices should occur, and a detailed set of mechanisms for controlling which proteins should be 
synthesized and in what quantities.  
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2.1 Genetic Regulation 
 
As it was aforementioned, each cell has the same DNA. Nevertheless, the DNA in some cells codes for the 
proteins needed to function as, say, a muscle, and other code for the proteins to make the lens of the eye. The 
difference lies in the regulation of the genetic “machinery”. At any particular time, a particular cell is 
producing only a small fraction of the proteins coded for in its DNA. And the amount of each protein 
produced must be precisely regulated for the cell to function properly. The cell will change the proteins it 
synthesizes in response to the environment or other factors. The mechanisms that regulate this process 
constitute a finely tuned, highly parallel system with extensive feedback and complex control structure. 
Besides, this intricate mechanism is not yet well understood [2].  
 
Genes are generally said to be on or off (or expressed/not expressed), although the amount of protein 
produced is also important. The production process is controlled by a complex collection of proteins in the 
nucleus of eucaryotic cells that influence which genes are expressed. Perhaps the most important of these 
proteins are the histones, which are tightly bound to the DNA in the chromosomes of eucaryotes. Histones are 
some of the most conserved proteins in all of life. There are almost no differences in the sequence of plant and 
mammalian histones, despite more than a billion years of divergence in their evolution. Other proteins swarm 
around the DNA, some influencing the production of a single gene (either encouraging or inhibiting it), while 
others can influence the production of large numbers of genes at once.  
 
In this manner, gene regulatory networks (GRNs) dynamically orchestrate the level of expression for each 
gene in the genome by controlling whether and how vigorously that gene will be transcribed into RNA. Each 
RNA transcript then operates as the template for synthesis of a specific protein by the process of translation. 
A simple GRN would consist of one or more input signaling pathways, regulatory proteins that integrate the 
input signals, several target genes, and the RNA and proteins produced from those target genes. Input 
signaling pathways transduce cellular signals to a group of regulatory proteins called transcription factors. 
Transcription factors activated by the signals then interact, either directly or indirectly, with DNA sequences 
belonging to the specific genes they regulate.  
 
 
3 Computational Inference of Gene Regulatory Networks 
 
 
Inference techniques use gene expression data in order to discover the structure of the GRNs. The term gene 
expression data refers to the measured abundances of mRNA of a subset or all genes in the genome of an 
organism. Such measurements are usually performed using microarrays, a revolutionary technology for 
collecting gene expression data on a genome-wide scale, providing a unique possibility to gain insight into a 
cell’s state. A description of microarray techniques is given in [3]. 
 
For computational purposes, expression data can be viewed as a matrix Ε that contains time-series, where rows 
correspond to genes and columns to the samples – also called conditions - taken at different time points. A matrix 
element eij contains the measured expression value or a derived statistic for the corresponding gene i and sample j. 
For example, an expression matrix for n genes under m conditions is shown in Figure 2.  

 
 condition 1 condition 2 … condition m 
gene 1 e11 e12 … e1m
gene 2 e21 e22 … e2m

… … … … … 
gene n en1 en2 … enm

 
Fig. 2. Gene expression data matrix structure. 
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Several inference methods have been proposed to perform the reverse engineering of GRNs from gene expression 
matrices. In general, these approaches consist in identifying correlations among the expression values (eij entries of 
Ε) of the genes under different conditions, and then, to infer regulation associations from these correlations.  
 
The basic idea behind these methodologies is that the expression value of a gene represents an indicator of its 
degree of activity. In this context, a significant change (increment or decrement) in the expression value of a 
gene i from the condition j to the condition j+1, represents a transition in the gene state from a non-active state 
(underexpressed) to an active state (overexpressed) or viceversa. This yields to a binary matrix obtained by a 
discretization procedure. Using these discretized data, it is possible to analyze when two o more genes have a 
similar (or opposite) behavior pattern over some time period, this relation among their activity patterns indicate 
the potential existence of a regulation link among them. Finally, it is possible to reconstruct the graph that 
represents the GRN by interconnecting the different regulation links discovered by the inference method. The 
whole process is shown in Figure 3.  

 
Fig. 3. From the gene expression matrix to the GRN. 

 
3.1 GRN Inference Techniques: State-of-Art 
 
Following these central ideas, several statistical and artificial intelligence methods have been proposed to 
perform the inference of GRNs [1, 4, 5]. Clustering algorithms represented one of the first approaches to 
supporting the large-scale identification of regulatory modules [6, 7]. An important limitation of this approach 
is that it assumes that co-expression is always equivalent to regulation. Moreover, this method implies 
symmetric and simultaneous relationships between the genes, which may not always correspond to real 
biological phenomena.  
 
As regards machine learning, Boolean Networks were one of the first models used in GRNs inference [8], [9], 
and several variations of this approach have been published recently [10]. These models basically aim to infer 
logical rules from a discretization of the gene expression matrix. Although these models can be easily applied, 
they depend on the arbitrary discretization of the gene expression values [11], which imposes strong 
assumptions and restrictions about the biological system under study. Evolutionary computation have also 
imparted the basis for several approaches to inferring GRNs. Ando et al. [12] presented an algorithm that 
combines genetic programming with the minimum least squares method. This technique infers a differential 
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equation system that represents regulation interactions between genes. Although this method may be robust in 
statistical terms, the algorithm was only tested on small GRNs (ten genes) and the authors detected important 
scalability limitations when applied to more complex data. Iba and Mimura [13] proposed an iterative inference 
approach based on a genetic algorithm (GA) whose learning process was guided by a molecular biologist. The main 
goal was to allow the expert to perform interactive analysis and validation of the results based on the introduction of 
new constraints until a GRN with a high level of predictive confidence was achieved. One of the most important 
drawbacks of this methodology is that it requires the biologist to have a good understanding of the dynamics of the 
GA in order to select optimum learning parameters.  
 
With respect to the Bayesian Networks research line [14], [15], [16]. These methods employ conditional 
probabilistic distributions for gene interactions modeling. Despite the strong theoretical rationale behind these 
approaches, the exponential explosion of the parameter space required for these models together with the 
large quantity of data needed to make reliable inferences, reduce their capacity to infer complex GRNs using 
gene expression data only. Moreover, the Bayesian Network models are inherently static. Since they are 
acyclic directed graphs, they can not represent auto-regulation or time-course regulation in a straightforward 
way [4].   
 
Recently, Soinov et al. [11] and Li et al. [17] approached the task of reconstructing GRNs as a classification 
problem. In summary, the authors proposed the application of decision trees to infer classifiers that may 
represent regulatory rules (relationships) between genes. They applied the C4.5 algorithm to infer the decision 
trees [18]. This method’s computational efficiency limitations are well-known for classification problems with 
continuous-valued attributes [19], which is the case in the GRNs inference problem since the gene expression 
values are real numbers. Although this is a sound and conceptually interesting approach, it may exhibit 
significant predictive limitations when predicting complex GRNs are integrated by thousands of genes. This 
drawback was successfully addressed by Ponzoni et al. [20] using a combinatorial optimization learning 
procedure called GRNCOP, which uses a novel adaptive discretization procedure. Despite the important new 
features introduced by GRNCOP, this method only infers some specific time-lagged regulation patterns between 
genes. 
 
3.1 Limitations of using real Gene Expression Matrices 
 
All the aforementioned methods infer the GRNs from data series that generally have significant noise and, 
usually, the amount of information (quantity of samples) provided by them is not sufficient to obtain accurate 
GRNs. For this reason, it emerged the necessity of finding other data sources for training and testing GRN 
inference techniques in a more exhaustive way. In this context, several researchers have recently proposed the 
use of artificial GRNs (aGRNs) [21, 22]. An aGRN is a complex system which is built according to well-
defined topological and kinetic properties, with the aim of generating artificial gene expression datasets that 
are highly reliable. In this sense, an aGRN constitutes a source of strategic data acquisition that gives 
unlimited 100% consistent information.  
 
Despite of the present increasing relevance of aGRNs in the environment of bioinformatics, there is a lack of 
a review about the state of art in the field. More precisely, there is no article in the literature that presents an 
evaluation of the main approaches used to construct such kinds of networks; neither there is an analysis of the 
advantages or disadvantages of each methodology. Therefore, in the next section, the main formalisms used to 
build aGRNs, together with their pros and limitations, will be presented and discussed. 
 
 
4 Artificial Gene Regulatory Networks 
 
 
Nowadays, the most widespread manner of designing an inference technique that learns a GRN from 
observed data is: the researcher attains expression gene data by means of, for example, the microarray 
technology, and executes the inference method under development so as to learn the GRN. However, when 
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trying to estimate the quality of a GRN inference method, the most important measure is the degree to which 
the discovered GRN matches the ‘real’ GRN which produced the observed data. Then, since this is of course 
unknown in practice, the quality of a GRN can be only roughly estimated.  
 
Under these circumstances, artificial GRNs arose as an alternative means of having access to the ‘real’, in fact 
virtual, GRN. Even though artificial GRNs do not represent any particular organism, they became very useful 
for this purpose as they are built according to well-defined topological and kinetic properties. Then, the 
process of finding a good inference method to learn GRNs starts with the implementation of an artificial 
GRN. The artificial GRN is later used to obtain plenty of reliable data, and then the inference method can 
yield the corresponding consistent GRN. In this way, the artificial and the learned GRNs can be compared, 
and the more they are alike, the better the inference method is. In the next paragraphs, the most relevant 
strategies described in the literature for this end, belonging to different research areas, will be introduced.  
 
4.1 Modeling aGRNs using ODEs 
 
Ordinary differential equations (ODEs) constitute a well known formalism used to build artificial GRNs 
starting from biological properties instead of observed data. ODEs model the concentrations of the gene and 
its products by time-dependent variables with values contained in the set of nonnegative real numbers.  

Gene regulation is therefore modeled by rate equations expressing the rate of production of a component of 
the system as a function of the concentrations of other components. Rate equations have the following 
mathematical form: 

.1),( nixf
dt
dx

i
i ≤≤=  

where x = [x1, …, xn]’ > 0 is the vector of concentrations of proteins, mRNAs, or small molecules, and 
 a usually nonlinear function. The rate of synthesis of i is seen to be dependent upon the 

concentrations x, possibly including x
ℜ→ℜn

if :
i.  

 
Various powerful mathematical methods for modeling biochemical reaction systems by means of rate 
equations have been developed in the past century, particularly in the context of metabolic processes [23]. 
Using these methods, kinetic models of genetic regulation processes can be constructed by specifying the 
functions i . In particular, Mendes et al. [21] present a system that generates random artificial gene networks 
according to well-defined topological and kinetic properties, and they used them to run in silico experiments 
simulating real laboratory microarray experiments. A main feature of their proposal is that noise, with 
controlled properties, is added to the simulation results several times emulating real measurements. 

f

 
A problem impeding the use of numerical techniques is the lack of in vivo or in vitro measurements of the 
kinetic parameters in the rate equations. Numerical parameter values are available for only a handful of well-
studied systems. In contrast, in cell cycle models, as a general rule the parameter values are to chosen such 
that the models are able to reproduce the observed qualitative behavior. For larger models, attaining 
appropriate values may be difficult to achieve.  
 
4.2 Modeling aGRNs using QDEs 
 
Another important formalism developed for building GRNs are the so called qualitative differential equations 
(QDEs). The main idea behind QDEs consists of abstracting a discrete description from a continuous model 
and analyzing the discrete instead of continuous equations to describe conclusions about the dynamics of the 
system. QDEs are used in the simulation method QSIM [24].  
 
It is important to make clear that QDEs are abstractions of ODEs, with the variables x taking a qualitative value 
composed of a qualitative magnitude and direction. The qualitative magnitude of a variable xi is a discrete 
abstraction of its real value, while the qualitative direction is the sign of its derivative. The function i  is 
abstracted into a set of qualitative constraints which restrict the possible qualitative values of the variables. 
Given an initial qualitative state consisting of the qualitative values for x at the initial time-point, the QSIM 

f
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algorithm generates a tree of qualitative behaviors. Each behavior in the tree describes a possible sequence of 
state transitions from the initial state. It has been proven that every qualitatively distinct behavior of the ODE 
corresponds to a behavior in the tree generated from the QDE, although the reverse may not be true. Some 
examples of the application of qualitative reasoning concepts to gene regulation are Heidtke and Schulze-
Kremer [25], Akutsu et al. [26] and de Jong et al. [27]. 
 
An important drawback with qualitative simulation approaches is their limited upscalability. As a consequence 
the weak nature of qualitative constraints and the difficulty to identify implicit constraints, behavior trees quickly 
grow out of bounds. This causes the range of application of the methods to be limited regulatory systems of 
modest size and complexity. Systems of even a few genes related by positive and negative feedback loops 
cannot be handled, unless these systems have been so well-studied already that behavior prediction can be tightly 
constrained.  
 
4.3 Modeling aGRNs using the Artifical Genome approach 
 
Last, but not least, a novel formalism presented in the literature is called Artificial Genome (AG) [22].  The 
AG constitutes an evolutionary model of genetic regulatory networks, based on a representation of network 
encoding and dynamics. This model derives a number of specific genes and their interactions from a string of 
bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics is 
determined by updating the gene network as if it were a simple Boolean network. This simplification is widely 
accepted, mainly because Boolean networks do exhibit dynamic behavior similar to that of biological cells.  
 
Basically, they adopted Reil’s artificial genome model as a representation of the way genetic encoding 
constrains the structure of gene regulatory networks [28]. A genome is represented by a linear sequence of 
‘‘bases’’ drawn from the set {0, 1, 2, 3} (analogous to the four bases A, C, G, and T in DNA). Within this 
genome, every occurrence of the sequence {0 1 0 1} is identified as a promoter (analogous to the ‘‘TATA’’ 
sequence in biological genomes). The region between the end of a gene and the beginning of the next 0101 
string becomes the promoter region for the downstream gene.  
 
Each gene is “translated” into a gene product by incrementing each base by 1. A gene with the sequence 
012130 will therefore result in a product with the sequence 123201. All of the promoter regions in the genome 
are searched for matches with each gene product; if a match to the product of gene A is found in the promoter 
region of gene B, we say that gene A controls gene B. This control may be either excitatory - A promotes the 
transcription of B - or inhibitory. In this way a genetic regulatory network is constructed from the randomly 
generated genome as shown in Figure 4. 
 
Then, they evolve the nodes of the gene network in four different manners: synchronous deterministic (SD), 
synchronous nondeterministic (SND) asynchronous deterministic (AD) and asynchronous nondeterministic 
(AND). The fitness function is defined as n(l/2), where n is the number of different limit cycles found, and l is 
the length of these limit cycles. The evolutionary algorithm works as follows: networks are built from 
artificial genomes generated at random, and each network is run 100 times from different initial states. The 
stopping criterion is of 200 generations with no improvement in fitness or 1,000 generations with no 
improvement in fitness over the initial network. 

 

 
 

Fig. 4. Reil’s AG model of a GRN. 
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The model of synchronously updated networks has shown to produce a wide range of gene network topologies, 
which typically lie between those of random networks and scale-free networks in terms of their degree distributions. 
Nevertheless, one disadvantage of the AG model is that the network dynamics relies on synchronous updating, 
which is biologically meaningless; when a more realistic asynchronous updating scheme is employed, the dynamic 
behavior collapses to a single point attractor. 
 
Having presented the main strategies used to build and/or learn GRNs, the landscape that illustrates the current 
protocol and alternatives for implementing accurate methods for GRN’s inference is depicted in figure 5. As it can 
be observed, many techniques exist in the present that can be used to infer GRNs from observed data, but the field 
of approaches used to build artificial GRNs is still necessitating to be explored. 

 

 
 

Fig. 5. GRNs’ development and main computational formalisms 
 
5 Conclusions 
 
 
Artificial GRNs were introduced in this work. We have claimed on behalf of their usefulness, especially as 
sources of unlimited reliable data. Later we have briefly discussed in lieu of their use for validation purposes. 
Finally, the main focus of the work was set on the main formalisms currently being used to build aGRNs.  
 
The first strategy we have presented was based on Ordinary differential equations (ODEs). The main idea 
behind this approach is the following one: if a gene network consists of n entities (proteins, mRNA, and/or 
small molecules), there exist n rate equations, one for each entity, describing its rate of synthesis and decay. 
As a generalization of ODEs appeared the Qualitative differential equations (ODEs) that contain variables 
that take on discrete qualitative values which abstract the real value. The major drawback of these two 
mathematical formalisms is their limited upscalability. The reason for this disadvantage is that measurements 
of the kinetic parameters in the rate equations are hard to attain for many organisms, this task turning out to be 
more difficult as the systems are bigger.  
 
In addition, a bio-inspired method called Artificial Genome was introduced. This approach builds a network 
from a particular interpretation of a string of “bases”, and then evolves that network in four different ways. 
The best results were obtained when the network was updated in a synchronous manner; nonetheless, this 
outcome constitutes also a negative aspect since this synchronous scheme of nodes’ renovation is biologically 
meaningless. 
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