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Abstract. In this paper we compare Skill-Relatedness Networks (SRNs)
for selected countries, that is to say statistically significant inter-industrial
interactions representing latent skills exchanges derived from observed la-
bor flows, a kind of industry spaces. Using data from Argentina (ARG),
Germany (DEU) and Sweden (SWE), we compare their SRNs utilizing
an information-theoretic method that permits to compare networks of
"non-aligned" nodes, which is the case of interest. For each SRN we ex-
tract its portrait, a fingerprint of structural measures of the distributions
of their shortest paths, and calculate their pairwise divergences. This al-
lows us also to contrast differences in structural (binary) connectivity
with differences in the information provided by the (weighted) skill re-
latedness indicator (SR). We find that, in the case of ARG, structural
connectivity is very different from their counterpart in DEU and SWE,
but through the glass of SR the distances analyzed are all substantially
smaller and more alike. These results qualify the role of the SR indicator
as revealing some hidden dimension different from connectivity alone,
providing empirical support to the suggestion that industry spaces may
differ across countries.

Keywords: Administrative Data · Skill-Relatedness · Network comparison ·
Inter-Industry Flows · Network Portraits.

1 Introduction

Labor flows are a key factor in understanding economic activity, as they rep-
resent the interplay of workers’ supply and firms’ demand of employment in
the labor market. Particularly, job-to-job transitions are relevant labor flows,
with recognized pro-cyclical behavior [8] that carry tacit information about the
relevance of past jobs’ experience for new employers, specially those occurring
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between firms with different economic activities. These transitions are crucial
for understanding the exchange of skills and abilities across sectors.

Traditionally, economists analyze labor flows using data at high level of aggre-
gation of the standard classifications of productive activities, in order to correlate
it with conventional national accounts data of sectoral activity. The evolution
of labor flows in Argentina has been analyzed using administrative records, and
it has been shown that more disaggregated data can provide a richer picture of
the temporal evolution of labor flows than aggregated data [14]. This is because
labor flows carry information about the productive structure and diffuse knowl-
edge among economic activities. Clearly, a more disaggregated level of detail, at
the same time brings more complexity in interpretation tasks.

Labor mobility across different industries reflects interconnections between
economic activities, which can be effectively represented as networks. These net-
works highlight the properties of connectivity between economic sectors, offering
insights into the flow of labor and the relationships between various industries
within an economy.

In Argentina, the Ministry of Labor, Employment and Social Security has
data of administrative records of formal private labor employment from the Ar-
gentine Pension System3 provided by the Observatory of Business and Employ-
ment Dynamics4. The data covers interannual employment exchanges between
productive economic activities registered between 2009 and 2014. This set of
activities includes nearly 400 sectors at four digits of ISIC5 Rev.4 classifier.

Previously, in [6,7] the inter-industry labor flows of Argentina have been
studied at high level of details, and it has been revealed that extracted labor
networks are typically dense, not sparse, with clear core-periphery structures,
and present small-world properties. Although these microscale networks provide
new and useful information, they also pose several challenges for their interpre-
tation and applications in, for example, policy design and analysis. The structure
of interannual labor networks varies over time due to both cyclical and structural
factors ([6], [14], [5]).

In this paper, we focus on skill-relatedness networks (SRN). We are partic-
ularly interested in uncovering the structure of skill overlap between industries,
as measured by labor flow transitions. We are interested in comparing the SRN
of Argentina (ARG) with the SRNs of Germany (DEU) and Sweden (SWE)6.
Our objective is to investigate to what extent the inter-industry labour net-
works differ between developing and developed countries. This comparison will
provide insights into the differences in skill-relatedness patterns and industrial
interactions across different economic contexts.

The proposed challenge translates into a new problem, because the under-
lying networks present systems of different dimensions, i.e. networks with non-

3 Spanish: Sistema Integrado Previsional Argentino (SIPA)
4 Spanish: Observatorio de Empleo y Dinámica Empresarial (OEDE)
5 The International Standard Industrial Classification of All Economic Activities

(ISIC).
6 Germany and Sweden have been selected due to availability of data.
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aligned nodes. Comparing and identifying similarities between networks can in-
deed be a challenging problem. When given two networks, determining how
similar they are typically involves quantifying their structural, topological, or
functional similarities. Several methods and metrics have been developed to ad-
dress this problem: Graph Invariants, Network Measures, Graph Matching Algo-
rithms, Information-Theoretic Methods, Network Alignment, Machine Learning
Approaches ([4], [13]). Choosing an appropriate method depends on the specific
characteristics of the networks and the research question at hand. Indeed, ap-
proaches to network comparison can be roughly divided into two groups based on
whether or not they consider two graphs defined on the same set of nodes. When
we consider networks defined on the same set of nodes, the comparison becomes
straightforward since there is no need to align nodes between the two networks.
For example, the cases of comparison of SRNs with the same number of nodes
-aligned- has been already done by [15]. However, even if two networks have
identical topologies, they might have no nodes or edges in common simply be-
cause they are defined on different sets of nodes. This highlights the importance
of carefully considering the context and objectives when choosing a comparison
approach for networks.

In the present case, we are dealing with a “non-aligned“ network comparison,
i.e. not the same nodes are necessarily shared between the networks. For this,
we are using portraits divergence, a method for characterizing large complex
networks by introducing a new matrix structure, unique for a given network,
which encodes structural information, provides useful visualization, and allows
for rigorous statistical comparison between networks [2].

The paper is organized as follows. In section 2 we describe the three datasets
used in the analysis and introduce the methodology. In section 3 we show the
results. In section 4 we discuss our work.

2 Data and Methods

To address the proposed objective, we use three available datasets for selected
countries: Argentina (ARG), Germany (DEU), and Sweden (SWE), at the level
of 4 digits of detail of their national economic activity classifications, procured
from various sources (see Table 1 for detail).

The underlying networks of interactions are built from these data. We then
compare these networks using information-theoretic method, named portraits
divergence. A difficult problem when studying networks is that of comparison
and identification, in particular, when they are defined on different sets of nodes,
i.e. the size of the network is different, and thus, the number and/or economic
activities of the underlying economic systems to be compared are different. The
portraits divergence method enables us to uncover structural information and
conduct rigorous statistical comparisons between the networks.
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2.1 Data

In order to build the Skill-Relatedness networks (SRN)s for ARG, SWE, and
DEU we processed data at four digits of their national economic activity classi-
fications (compatibles to ISIC 4 or NACE 2 classification, the European version
of ISIC 4) from different sources, explained herein and summarised in Table 1).

For Argentina, we count with labor flows for the period 2009-2014, from the
Observatory of Employment and Business Dynamics within the Ministry of La-
bor, Employment, and Social Security. This data is sourced from administrative
records of the Federal Public Revenue Administration. With access to flow tran-
sition matrices, we first proceed to compute the skill-relatedness (SR) indicator
[9], following the methodology described in the next section. Then, we construct
the corresponding Skill-Relatedness Networks (SRNs).

For Germany and Sweden, the data are available of skill-relatedness matrices,
which allows us to proceed directly to building the SRNs of each country.

In the case of Germany, we use directly the SR data at four digit WZ08
national industrial classification (equivalent to NACE 2), for the period 2007-
2013, published in [9] by the authors7 originally estimated from data of the
Employee History8, based on the social security records of Germany. Addition-
ally, we use German employment data from DESTATIS, the Federal Statistical
Office of Germany.

In the case of Sweden, we use directly the SR data at four digit SNI 2007 na-
tional industrial classification (equivalent to NACE 2), for the period 2007-2017,
calculated by the Swedish Agency for Growth Policy Analysis ([12]) using the
methods in [9] with Swedish administrative data9. We use Swedish employment
data from Statistics of Sweden for the period of analysis.

2.2 Methods

Skill-Relatedness Networks. Given that for Argentina we have the transition
flows matrices we first proceed to construct the skill-relatedness networks [15].
We calculate the skill-relatedness indicator, SRij ,∀i, j ∈ N , where N represents
the total number of industries (hereafter used interchangeably with "economic
activities" or "sectors") included. The skill-relatedness indicator between indus-
tries i and j is computed as a ratio between the observed labor flows and the
expected flows from a null model, which is calculated from the margins of the
respective (AN×N ) flow matrix for each cell (see [9], [10], and [11] for further
insights on this methodology), see Fig. 1. The indicator is then symmetrized and
normalized to map it to the interval SR ∈ [−1, 1].

7 See “Skill relatedness matrices for Germany” at https://iab.de/publikationen/
publikation/?id=7202046.

8 German: Beschäftigten-Historik, BeH.
9 See “Skill relatedness matrices for Sweden” at https://www.tillvaxtanalys.se/

in-english/publications/pm/pm/2021-05-18-skill-relatedness-matrices-for-sweden.
html.

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 91

https://unstats.un.org/unsd/classifications/Econ/ISIC
https://www.destatis.de/
https://www.scb.se/en_/
https://iab.de/publikationen/publikation/?id=7202046
https://iab.de/publikationen/publikation/?id=7202046
https://www.tillvaxtanalys.se/in-english/publications/pm/pm/2021-05-18-skill-relatedness-matrices-for-sweden.html
https://www.tillvaxtanalys.se/in-english/publications/pm/pm/2021-05-18-skill-relatedness-matrices-for-sweden.html
https://www.tillvaxtanalys.se/in-english/publications/pm/pm/2021-05-18-skill-relatedness-matrices-for-sweden.html


Argentina Germany Sweden
Data Inter-industry labor

flows
Inter-industry skill-
relatedness

Inter-industry skill-
relatedness

Classification ISIC 4 WZ08 (NACE 2) SNI 2007 (NACE 2)
Period 2009-2014 2007-2014 2007–2017
Transitions (#) 5 7 10
Avg. Empl. 5,619,134 28,467,487 4,665,205
Flows
. total 2,060,515 5,529,890 4,800,000
. avg./year 412,103 789,984 480,000
Sectors (#)
. original 410 597 586
. SR+ 407 584 577
Source Ministry of Labor,

Employment, and
Social Security

Table 2, [10], based
on Beschäftigten-
Historik, Federal
Statistical Office

Rapport 2021:02:04,
Swedish Agency
for Growth Policy
Analysis, based on
LISA data, Statistics
of Sweden

Table 1. Data reference summary for Argentina, Germany and Sweden. Administrative
data at 4 digits of economic activity classifications. Comparable classification systems
ISIC 4 and NACE 2.

In the cases of Germany and Sweden, given that we count with skill-relatedness
data we build build the matrices directly. So far, for the rest of the analysis we
only use the SRNs for the three countries.

For further analysis and network comparison, we keep only positive values
of skill-relatedness values of the skill-relatedness matrices for the three coun-
tries. Bounding to positive values, seems to be an appropriate method and a
proper criteria for pruning the networks of the less significant flows in the “skill-
relatedness” sense. Values greater than 0 indicate that the number of observed
job switches is greater than what would be expected at random under the null
model specified, i.e. workers that would have moved at random given the respec-
tive size of each industry (similar to the Configuration Model [3]). Hereafter we
refer to these networks with positive skill-relatedness, SRij > 0, as SRN+s or
simply SRNs and conveniently index them by country whenever needed [15]. Fig
2 shows the skill-relatedness networks for three respective datasets. We plot the
heatmap representation for both, unweighted, ie. binary network (Fig. 2, lower
row), and weighed networks (Fig. 2, upper row).

Regarding the size of the networks to compare, which refers to the number of
nodes, i.e. industries, included in the analysis, it is worth noting that Germany
and Sweden have more than 40% industries at their four-digit detailed classifi-
cation compared to Argentina. This difference in network size presents the chal-
lenge of comparing networks that are “non-aligned”, meaning they have different
numbers of nodes, where no nodes are necessarily shared between the networks.
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Fig. 1. The scheme of construction of skill-relatedness indicator used for Argentina.
The sequential steps that describe in detail the process to get from the observed flow
matrix to the skill relatedness indicator matrix. A reference matrix of “expected flows”,
fe
ij , built on the basis of the edges (eg: totals per rows, Fi., columns, F.j , and table, F..)

of the matrix of observed flows. This matrix reflects “random” flows in the sense that
sectoral exchanges are proportional to the outflows and inflows between sectors with
respect to total flows. For each cell an associated matrix of elements, SRij , is calculated
as the ratio of the observed value of employment flows with respect to the theoretical
or expected value. Thus, one can interpret values less than unity, SRij ∈ [0, 1) as
not moving away from a random distribution significantly, while values greater than
unity, SRij ∈ [1,+∞), showing deviations from the proposed random distribution as
benchmark. The SR matrix is symmetrized by means of averaging the SR matrix with
its transpose. In this way the related graph becomes undirected.

To address this issue, we employ here the information-theoretic method of por-
trait network divergence [1]. It is a common approach for comparison without
assuming node correspondence, using a comparison measure based on a graph
invariant. Using an invariant helps alleviate concerns about the encoding or
structural representation of the graphs, allowing the corresponding measure to
focus solely on the topology of the network. Graph invariants can take various
forms, including probability distributions. Thus, by focusing on the topology
of the networks and abstracting from the problem of node correspondence, we
can compare these networks, without ensuring that networks use the exact same
industrial classification encoding, which allows for a direct comparison of their
structures without the need to align nodes. This approach enables us to analyze
the similarities and differences in the network topology across different countries
or contexts.

Portraits. The method stands on the construction of a Bℓ,k-matrix (v.g.: the
network portrait, see [2]) consisting of:

Bℓ,k ≡ the number of nodes who have (exactly) k nodes at distance ℓ

for 0 ≤ ℓ ≤ d and 0 ≤ k ≤ N−1, where the distance is taken as the shortest path
length and d is the graph’s diameter (see Fig. 3). In this sense, like onion layers,
each node vi is surrounded by ℓ-shells or connectivity layers of order ℓ. The rows
represent histograms (or distributions) of ℓ-order shortest paths. This matrix
condenses structural properties of the network based on the distance connecting
two nodes in terms of successive links or path lengths, ℓ, which encode shortest
path distributions, for example including the degree distribution (ℓ = 1, for an
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Fig. 2. Skill-Relatedness Networks (SRNs). Visualizations of SRN+ for Argentina
(ARG), Germany (DEU), and Sweden (SWE) for periods and size according to the
specifications in Table 1. Heatmap representation of undirected filtered (positive) net-
works: Unweighted (binary, upper row) and weighted (lower row) SRNs. Sorting is done
with a hierarchical clustering algorithm with complete linkage.

unweighted network) and higher order paths. It is important to state that the
network portraits are agnostic of the identity of the nodes, capturing topological
information without reference to the nodes attributes. As a graph invariant, the
B-matrix of a network is unique and can be used as a network “fingerprint”. In
this way, comparing two networks G and G′ can be translated into comparing
their portraits, B and B′.

Network Portrait Divergence. After computing the portraits of these networks,
say G and G′, each portrait can be transformed into matrices of row-wise proba-
bility distributions, then reduce them to two single joint distributions for all rows
which can be used to define a single Kullback-Liebler (KL) divergence between
their portraits (see [1]). The network portrait divergence (NPD) is defined then
as the Jensen-Shannon divergence:

DJS(G,G′) ≡ 1

2
KL(P ||M) +

1

2
KL(Q||M),∈ [0, 1]

where M ≡ 1
2 (P ||Q) is the mixture distribution of P and Q, where P is P (k, ℓ) =

kBℓ,k

N2 and Q is, likewise, Q(k, ℓ) =
kB′

ℓ,k

N2 .
Note that unweighted networks will have integer diameter d, while for weighted

networks d ∈ R is continuous. In this latter case, which specifically concern us
for the comparison of SRNs, the shortest paths may have non-integer paths so
the algorithm used to find the shortest paths for unweighted networks changes
from breadth-first-search to Dijkstra’s algorithm. Also, it is necessary to define

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 94



Fig. 3. Bℓ,k(G)-matrix construction. For each node vi ∈ V , count connected nodes at
ℓ-steps distance, its ℓ-shell or connectivity layer, then summarise for each ℓ-distance
(in rows) the number of nodes that have k-neighbors, taken as shortest path length
(ℓ-shells). The first row ℓ = 0 gives the number of nodes. The second row ℓ = 1 stands
for degree distribution: each sector’s number of direct connections. The subsequent
rows ℓ ≥ 2 distribution of l-nearest neighbours. The last row ℓ = d gives the diameter
of the network, i.e. longest shortest path in the network.

an appropriate binning strategy for aggregating (continuous) shortest paths to
facilitate the network comparison task. A simple one is to use b bins as quan-
tiles to be able to compute the portraits, Bℓ,k and B′

ℓ,k, of each network. In our
case we choose BinEdges regarding the weight distributions of the SRNs under
analysis.

3 Results

The SRNs for each country, built from the positive skill-relatedness indicator
matrices and ancillary employment data, present a visible dense structure with
a unique giant component (induced by the construction of SRN+) having short
paths and diameter (top row in Fig. 2). As reported in Table 1, although the
statistical systems of classification for economic sectors are compatible between
countries, the size of these networks vary because of: a) differences in some
sectors’ specification as informed by each country, and; b) as a result of the
filtering process described in section 2, of significantly observed flows in terms
of the skill-relatedness criteria.

After building each country SRN, we computed their respective portraits
for weighted, Bwc

ℓ,k, as well as unweighted, Bc
ℓ,k, versions of the SRNs with

c ∈ {ARG,DEU, SWE}, plotted in Fig. 4. We use their unweighted versions
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to naturally introduce a way to better comprehend the information contained
therein in terms of node connectivity.

In a network portrait, ℓ refers to the length of shortest paths and k counts
the “number of nodes“ having paths of length ℓ, that is to say considering ℓ-
shells of each node in the network (see Fig.3). In an unweighted network ℓ = 1
is the degree distribution, ℓ = n is the distribution of shortest paths of order n,
and ℓ = d is the max length representing the network diameter. In a weighted
network, ℓ has to be discretised as it is continuous.

Fig. 4. Network portraits. Upper row: Unweighted (binary) SRNs. Discrete short-
est path length ℓ from 0 to d, the diameter of the network with dARG = 4,
and dDEU = dSWE = 5. Lower row: Weighted SRNs. Continuous (binned) short-
est path length ℓ from 0 to d, the diameter of the network with dARG = 1.95,
dDEU = 1.43, and dSWE = 1.96. For a better visualization we used 16 bins
(vertical axis), with smaller bins destined to lower values of SR > 0 (BinEdges
∈ (0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2)).

For the unweighted portraits (Fig. 4, upper row), depicting the fingerprints
of the pure connectivity in the SRNs, show the distribution of shortest paths for
each country’s network. These portraits present a kind of P -shape plot related
to the big connected component topology that is characteristic of SRNs, as
mentioned earlier. Their range goes from ℓ = 0 (representing the total count
number of nodes, N), occurring Bc

ℓ,k = Nc for each country network, to ℓ = d,
the corresponding (unweighted) diameter of each network (v.g.: dARG = 4, and
dDEU = dSWE = 5). Intuitively, the visualizations of this portraits show a
condensed image of the way nodes, economic sectors in SRNs, are connected and
proximate to each other albeit not identifying the specific connection between
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any pair of sectors m and j. The second row (Bc
ℓ=1,k) corresponds naturally to

the standard degree distribution of direct connections. It can be appreciated that
this distribution is relatively more widespread for ARG than for SWE and DEU,
with DEU accumulating relatively more (less connected) nodes in small values of
k, that is to say more nodes with small ℓ order direct neighbourhoods. The next
row, Bc

ℓ=2,k, show the distribution of “two steps” paths or the most proximate
indirect neighbourhood shell for each node (ℓ-shell=2), that is to say: industries
connected (through SR-links) with the industries in their direct connections
circle. It can be appreciated that all countries show distributions centred in
higher values of k, corresponding to the majority of nodes (industries) having
a great number of nodes (industries) at this distance. In this case, DEU has
a relatively more widespread distribution, while ARG and SWE appear more
alike with higher density in high values of k. This means that most sectors
show many “two steps” connections, a fact consistent with the analysis of labour
flow networks for Argentina evidencing dense networks with short average paths
and diameter, and having small world properties (v.g.: typical diameter of three
steps, see [6], [7]). The following row, Bc

ℓ=3,k, show the distribution of “three
steps” paths length, an enhanced indirect neighbors set. It can be appreciated
that the distributions are again skewed towards lower values of k, meaning that as
the length of shortest paths approaches the diameter (shortest paths maximum
length) there are less nodes (industries) having many nodes at this distance. In
this case, ARG and SWE appear more similar with a greater concentration of
nodes (industries) having a small k number of nodes at a three step distance,
while DEU has more dispersed distribution with higher values of k nodes at three
steps distance. This suggests that DEU has deeper chains of connectivity, say
showing more cohesion, than ARG and SWE. The last rows of these unweighted
portraits, referring to the more distant layers of connectivity near or at their
(respective) diameters, show high concentration of these longer paths in lower
values of k. This refers to the paths linking nodes with sectors in the outer
periphery having very poor connectivity.

For the weighted portraits (Fig. 4, lower row), depicting the valued finger-
prints of the SRNs, show the distribution of shortest paths in terms of SR for
each country’s network. Their range goes from ℓ = 0 to ℓ = d, in this case corre-
sponding to the continuous diameter of each network (v.g.: dARG = 1.95, dDEU =
1.43, and dSWE = 1.96). To compare this portraits showing the distributions of
weighted shortest paths, we computed the same number of bins for the three
SRNs so the interpretation can equally be made for all values of (binned) ℓ. As
can be appreciated, the interpretation of weighted path lengths and the compar-
ison between them is more demanding although differences and similarities can
be appreciated between the fingerprints. The chosen binning, with BinEdges ∈
(0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2),
highlights lower SR+ weights in line with their decreasing prevalence in SRNs
(see Fig. 5) across the (maximum) range, r ∈ (0,max(dc)), of observed weighted
paths for all countries.
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With this weight aggregation, the weighted portraits in Fig. 4(lower row) can
be divided into three “charge zones” in relation with the quantification of sector
connectivity referenced in the horizontal axis and the weighted paths measured
in the vertical axis:

a high-concentration, low-weighted shortest ℓ-paths in bins 1 to 5, correspond-
ing to a total weighted distance of ℓ ∈ (0.00, 0.01) and involving the inter-
connection of just a few sectors;

b high-dispersion, medium-weighted shortest ℓ-paths in bins 6 to 10, corre-
sponding to a total weighted distance of ℓ ∈ [0.01, 0.10), involving a sharply
increasing interconnected (horizontal dispersion) and decreasing concentra-
tion (low intensity, showed in black and white gradient colors) sectors topol-
ogy; and

c high-concentration, high-weighted shortest ℓ-paths in bins 11 to 16, corre-
sponding to a total weighted distance of ℓ ∈ [0.10, 2.00] and involving the
decreasing interconnection of most sectors with sectors in the "periphery".

Fig. 5. SRNs weight distribution.

To quantify these dissimilarities we calculate the (pairwise) network portrait
divergence, DJS(G,G′) ∈ [0, 1], with higher values showing more dissimilarity,
presented in Fig. 6 for both unweighted and weighted portraits. The comparison
for the unweighted portraits present stark differences between ARG and those
of DEU (0.63) and SWE (0.80), while at the same time it is also informative of
the differences between DEU and SWE structure (0.55). In light of this results,
it is useful to revisit the original binary structure of the SRNs in the upper row
of Fig. 2. Taking the case of ARG, it is quite clear that its (clustering ordered)
connectivity structure differs strikingly with both DEU and SWE. In partic-
ular, in ARG there is a group of approximately 30% of total sectors (bottom
right) with high interconnection within them and some non-trivial interconnec-
tion with the rest of the sectors. In turn the rest of the sectors are grouped
and ordered in decreasing order of total connectivity, showing some subgroups
with more connectivity within. In the case of DEU, the connectivity structure is

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 98



ARG DEU SWE
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0.00 0.63 0.80

0.63 0.00 0.55

0.80 0.55 0.00

unweighted
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0.00 0.27 0.25

0.27 0.00 0.19

0.25 0.19 0.00

weighted
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SRN networks pairwise portrait divergence

Fig. 6. SRNs network pairwise portrait divergence. Right: weighted portraits diver-
gence. Left: unweighted portraits divergence. Color range for DJS(G,G′) ∈ [0, 1],
greater values showing more dissimilar network portraits.

smoothly decreasing and characterized by a small modular structure, with some
small sector groupings with high connectivity within. The case of SWE appears
as an intermediate between the others, also with smoothly decreasing modular
connectivity structure but with subgroups bigger than in the case of DEU.

Regarding the comparison of weighted portraits, the differences of ARG’s SRN
and their counterparts in DEU (0.27) and SWE (0.25) appear less pronounced,
and the comparison between DEU and SWE (0.19) show the lowest divergence.
Again, it is useful to revisit the original weighted SRNs in the lower row of
Fig. 2. This time the visible connectivity structure is more difficult to disentan-
gle because of the weak density in all cases. In particular, SWE presents more
modular structure detectable with the hierarchical clustering at the corners up-
left (higher intersectoral connectivity within and also between this group and the
immediate neighbors down/right, more central), and down-right (smaller group,
less connected with the rest of the network, more periphery like).

4 Discussion

In this paper we presented a comparison of different countries’ skill-relatedness
networks (SRNs) using data from Argentina (ARG), Germany (DEU) and Swe-
den (SWE) to assess the possible differences between SRNs in a developing
country vis-a-vis those in developed countries. To this end we used a method
suitable to compare networks of different size (non-aligned networks) that fo-
cuses on topological information [1] using a measure of network portraits [2],
a condensed representation of shortest path length structural information that
compose a unique network fingerprint. Through this applied exercise we found
that the methods of portrait representation of networks and the measure of net-
work portraits divergence appear as appropriate methods to characterize and
compare SRNs.

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 99



We found that the comparison of unweighted portraits of these networks show
contrasting differences between the pure connectivity (binary) structure of the
SRNs of a developing country like Argentina to the corresponding SRNs for de-
veloped countries like Germany and Sweden, with stark differences of interindus-
try connectivity in Sweden and high contrast with Germany’s. Moreover, this
comparison reveals important differences in the connectivity structure between
Germany and Sweden networks. When comparing the more relevant weighted
skill-relatedness networks we found less contrasting differences between all the
SRNs. In particular, Argentina’s SRN appears quite dissimilar to the correspond-
ing to both DEU and SWE, and at the same time Germany’s SRN is quite similar
to that of Sweden. These preliminary findings may give relative support to the
hypothesis of similarity of different countries SRNs conditioned on historical and
cultural differences (see [9]). On the other hand, they show that the connectiv-
ity (topological) structure of different observed SRNs present stark differences
between countries.
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