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Abstract. Accurate forecasting of electricity demand is crucial for im-
proving transmission system operation through optimized use of resour-
ces, operation planning, and minimized outages. The dynamic of elec-
tricity demand depends on exogenous factors (e.g., meteorological con-
ditions), but the relationships between demand and factors are complex
and nonlinear, posing a challenge for accurate prediction.
With the aim of predicting electricity demand, this work explores the
relationship with meteorological conditions for the province of Entre Ríos
(Argentina). We propose a recurrent neural network model based on long
short-term memories, which receives the raw input data without feature
extraction. We evaluate its performance and compare it with a state-of-
the-art method.
The exploratory analysis of the data shows that temperature extremes
present a strong influence on consumption patterns. The proposed mod-
els achieve a performance of 0.77 in determination coefficient when com-
paring predicted electricity demand with observations. This indicates the
potential as a powerful tool for optimizing the system operation in Entre
Ríos.

Keywords: electricity demand forecast · weather conditions · deep learn-
ing · artificial neural network.

1 Introduction

Electricity demand forecasting is a key input for operational and strategic deci-
sion-making [1]. Each country tries to use as little energy as possible in different
areas from buildings to farms, from industrial processes to vehicles [2]. Having
prior information on the electricity needs for the coming days is crucial for com-
panies providing this service, as it enables them to plan their daily operations
effectively and determine necessary contingency measures. Thus, they can mini-
mize operational issues, prevent service disruptions or equipment damage due to
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overloading, and avoid blackouts and financial losses. The electricity consump-
tion is influenced by different external factors such as water, wind, temperature,
which make its prediction complex [3].

Numerous studies have explored methodologies to forecast energy demand,
ranging from traditional statistical approaches to advanced techniques such as
artificial neural networks (ANNs). The main challenge is the difficulty in captur-
ing non-linear relationships and the limited long-term forecasting capacity. In [4]
they tested different ANNs to forecast the daily electricity demand in Greece,
including ambient temperature, relative humidity, among others, as input vari-
ables. In [5] they chose to apply the backpropagation neural network model and
trend extrapolation method to forecast energy demand. The information used
as input was the primary, secondary, and tertiary value of the industry, energy
consumption, the level of urbanization, among others, without taking into ac-
count weather data. They found that the precision of the neural network was
much higher than trend extrapolation. Furthermore, the ANN backpropagation
network model is used to forecast Turkey’s electricity demand based on different
socio-economic indicators [6]. The applications of traditional techniques such as
econometric and time series models along with soft computing methods such
as neural networks, fuzzy logic, and other models are reviewed in [7] and veri-
fied the remarkable performance of the neural network models. Particularly, an
important advantage of deep neural networks is that they can automatically
extract features from raw data to support predictions [12]. While deep neural
network techniques have shown promising results across various domains in re-
cent years [8,9,10,11], their application to energy demand forecasting based on
meteorological variables remains relatively unexplored.

Focusing on ENERSA, the company that provides the service in the province
of Entre Ríos, relies on rudimentary tools to make decisions based on energy de-
mand. For instance, they adjust the service cost according to an analysis of the
seasonal variations in the demand from historical records. Other aspects they
take into account for decision-making are the GPD (from English, Gross Do-
mestic Product) forecasts or available economic forecasts, the weather seasonal
forecast by the SMN (from Spanish, Servicio Meteorológico Nacional), and the
behavior of the activity of large customers and the residential sector [O. Busta-
mante, 2019, personal communication]. In this study, we contribute to the needs
of ENERSA by developing an energy demand forecast model based on machine
learning methods, aiming to improve decision-making processes and optimize
electricity distribution in the province.

The proposed forecast is based on historical daily demand and meteorological
data. We initially focused on developing a method to forecast the electricity
demand in Entre Ríos for one day using information from the previous 7 days.
In the future, the developed model could be forced with 7-day weather forecasts
produced by climate models, and thus, identify critical days of the coming week
that may lead to failures in the regional system.
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2 Methods

In practice, it is often challenging to determine whether a time series is generated
from a linear or nonlinear underlying process, as thereby, which method is more
effective in out-of-sample forecasting. Thus, it is difficult for forecasters to choose
the right technique for particular applications. Typically, a number of different
models are tried and the one with the most accurate result is selected. We started
with ARIMA given that most studies in the literature use it as a benchmark.
[13,14,15].

2.1 ARIMA

In an autoregressive integrated moving average model, the future value of a
variable is assumed to be a linear function of several past observations and
random errors [16]. That is, the underlying Hprocess that generates the time
series has the following form:

(1−B)dyt = θ0 + ϕ1yt−1 + ...+ ϕpyt−p + ϵt − θ1ϵt−1 − ...− θqϵt−q (1)

where (1−B)dyt indicates that the series has been differenced d times; yt and t are
the actual value and random error at time period t, respectively; ϕ (i = 1, 2, ...., p)
and θ (j = 0, 1, 2, ..., q) are model parameters. d, p, and q are integers and are
often referred to as orders of the model. Random errors, ϵt, are assumed to be
independently and identically distributed with a mean of zero and a constant
variance of 2. Eq. 1 entails several important special cases of the ARIMA family
of models. This means p are the last values of the time series used as regressors,
q is the size of the moving average window, which means that an average term
based on the error of the previous time step is included, and d indicates the
number of times the data is differenced to remove trends and make the series
more stationary.

2.2 Artificial Neural Networks (ANNs)

ANNs are powerful functions that simulate how the human brain processes in-
formation. An ANN is composed of a network of processing nodes (or neurons),
which perform numerical manipulations and are interconnected in a specific or-
der. The historical data can be used by ANNs to predict the future values of
the noisy multivariate times series [17]. Feed-forward ANNs can be applied to
sequential or time series data, however, there are several issues that render them
unsuitable for these types of problems.

Long Short-Term Memory (LSTM) Recurrent neural networks (RNN) are
able to capture the dynamics of sequences via recurrent connections, overcoming
the limitations of feed-forward ANNs. LSTM is a special type of RNN, which
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Fig. 1. LSTM unit architecture

has the capability to learn longer dependencies in the dataset [17,18]. LSTMs
have been effectively used in several time series forecasting applications, e.g. in
[19].

The simple LSTM architecture with forget gate [20] is depicted in Figure 1.
The forget gate determines the unnecessary component from the previous cell
state which can be computed as follows:

ft = WfXt + Ufht−1 + bf (2)

where ft is the forget gate activation at time t. This vector determines which
part of the past information to forget, Wf is the weight matrix applied to the
input Xt at time t, Uf is the recurrent weight matrix applied to the previous
hidden state ht−1 (the output of the LSTM cell in the previous time step) and
bf the ias term for the forget gate. The state update of the cell is determined by
the input gate and tanh layer, which is calculated as

it = WiXt + Uiht−1 + bi, (3)

where it is the input gate activation at time t. This vector decides how much
new information to store in the cell state, Wi is the weight matrix applied to the
input Xt, Ui recurrent weight matrix applied to the previous hidden state ht−1,
bi the bias term for the input gate.

The candidate cell state at time t is a new candidate memory created from
the input and the previous hidden state which is calculated as

C∗
t = tanh(WcXt + Ucht−1 + bc) (4)
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where tanh hyperbolic tangent activation function, ensuring the output values
are between -1 and 1, Wc the weight matrix applied to the input Xt, Uc the
recurrent weight matrix applied to the previous hidden state ht−1 and bc the
bias term for the candidate cell state.

The cell state at time t is a combination of the previous cell state, modulated
by the forget gate, and the new candidate memory, modulated by the input gate
which is calculated as

Ct = ftCt−1 + itC̃t (5)

where ftCt−1 the element-wise (Hadamard) product between the forget gate
activation and the previous cell state Ct−1, representing the part of the previous
cell state that is retained and itC̃t the element-wise (Hadamard) product between
the input gate activation and the candidate cell state, representing the new
information being stored.

The output from the cell to the next cell is calculated by the output gate as

ot = WoXt + Uoht−1 + bo (6)

where ot the output gate activation at time t. This determines which part of the
cell state will be used for the output. Wo the weight matrix applied to the input
Xt, Uo the recurrent weight matrix applied to the previous hidden state ht−1

and bo bias term for the output gate.

ht = ot tanh(Ct) (7)

where ht hidden state at time t. This is the output of the LSTM cell, based on
the output gate activation and the current cell state, ot output gate activation,
modulating the influence of the cell state on the output and tanh(Ct) application
of the hyperbolic tangent function to the cell state Ct), ensuring the output
values are between -1 and 1.

2.3 Metrics for performance evaluation

For evaluating training and prediction performances we considered the Root
Mean Squared Error (RMSE). It provides a measure of the average size of the
errors between predicted and actual values, with lower values indicating better
model performance. In addition to the RMSE, we also use the coefficient of
determination (R2). It represents the proportion of the variance in the dependent
variable that can be predicted from the independent variables. A higher R2 value
indicates that the model explains a greater proportion of the variance in the
target variable and thus has better predictive performance.

3 Data description

The electricity and meteorological data are daily time series for the period 2012
to 2023 obtained from two sources: Energía de Entre Ríos S.A. (ENERSA)
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Table 1. Dataset variables

Variable Description
Year The year of the observation.
Month The month of the observation.
Encoded Day Encoded representation.
Minimum Temperature The lowest temperature recorded.
Mean Temperature The average temperature recorded.
Maximum Temperature The highest temperature recorded.
Skin Temperature The temperature of the skin surface.
Surface Runoff The amount of water flowing over the sur-

face.
Total Precipitation The total amount of precipitation.
Surface Latent Heat Flux The flux of latent heat at the surface.
Surface Pressure The pressure exerted by the atmosphere at

the surface.
Surface Sensible Heat Flux The flux of sensible heat at the surface.
Surface Short-Wave Solar Radiation Down-
wards

The amount of solar radiation reaching the
surface.

Long-Wave Thermal Radiation Downwards The amount of thermal radiation emitted
by the surface.

Surface Net Solar Radiation The net balance of solar radiation at the
surface.

Surface Net Thermal Radiation The net balance of thermal radiation at the
surface.

Total Cloud Cover The percentage of sky covered by clouds.
Wind Speed The speed of the wind.
Relative humidity Measurement of water vapor content in air.
Number of Service Users The number of users of an electricity ser-

vice.

and the fifth-generation ECMWF atmospheric reanalysis of the global climate
(ERA5). After preprocessing, the final dataset includes a total of twenty vari-
ables and it can be seen in Table 1:

The input of the model includes historical values of variables over 7 days. The
output is the demand for electricity on the eighth day. To create the data set, we
define a time window of 7 days, indicating the number of historical data points
the neural network will consider to predict the next day’s demand. Observed
electricity demand is the target variable. This data was split as follows: 80%
for training, 10% for validation, and 10% for testing. The split is performed
using consecutive periods of daily data, for instance, January 2012 to February
2021 for training, March 2021 to April 2022 for validation, and May 2022 to
May 2023 for testing. This approach ensures that each subset of data (training,
validation, and testing) preserves the inherent temporal structure which includes
a marked annual cycle. This is crucial for capturing seasonal fluctuations and
other temporal patterns that could impact the predictive performance of the
model.
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Fig. 2. Annual demand time series with trendline [MWh]

4 Experiments and results

4.1 General features of the demand series

Exploratory analysis was conducted to explore the relationship between energy
and meteorological variables. The electricity demand over the entire study period
shows an upward trend in demand over the years, as can be seen in Figure 2. No-
tably, there were discernible spikes in demand in 2016 and 2019, corresponding
to the increase of tariffs suffered in Argentina during those years. These fluctua-
tions highlight the influence of external factors such as economic conditions and
population growth on energy consumption patterns.

From the annual cycle analysis represented in Figure 3, we observe that en-
ergy consumption follows a “W” pattern, with high consumption during summer
months, but also during winter, and less consumption during intermediate sea-
sons.

The left panel of Figure 4 illustrates the dynamic of energy consumption
across different days of the week. The results indicate that energy consumption
peaks from Tuesday to Thursday, while Sunday records the lowest levels of con-
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Fig. 3. Annual demand cycle [MWh]

sumption. When holidays are isolated in the analysis, as shown in the right panel
of Figure 3, the boxplot suggests that energy consumption during holidays is
comparable to that on weekends. Conversely, the consumption on working days
shows a slight increase compared to the boxplots presented in the left panel,
which include holidays. These findings align with previous studies [21,22,23].

Fig. 4. Left: Energy consumption across different days of the week. Right: Energy
consumption across different days of the week including holidays.

Lastly, we evaluate the relationship between input variables and energy de-
mand with scatterplots (Figure 5). The results highlight the strong influence of
temperature on energy consumption, while the direct impact of other variables
is not as clear.

4.2 Models evaluation

For the ARIMA model, several parameter configurations were tested, with p=7,
d=2, and q=7 achieving the best performance. This indicates that order 7 was

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 113



Fig. 5. Relationship between input variables and energy demand

used for the seasonal autoregressive component, 2 indicates that a second-order
differentiation was necessary, and order 7 was used for the moving average com-
ponent. The approximation of ARIMA models to complex non-linear problems
may not be adequate, obtaining R2=0,05 and RMSE=0,22. This can be seen in
the Figure 6.

For LSTM models, a total of thirty-one different settings were explored using
the options described in section II. 1-layered, 2-layered, and 3-layered LSTM
structures are used for modeling with different amounts of neurons in each hidden
layer. After the LSTM layers, a fully connected layer is incorporated to further
process the learned features and capture complex patterns in the data. The
number of layers and units in the LSTM was selected via trial-and-error, as well
as the training parameters learning rate, and batch size. The performance of each
architecture considered was evaluated using different configurations regarding
learning rate, batch size, and number of epochs.

In Table 2, different configurations used in the experiments along with their
corresponding metric values for each dataset can be observed. For the experi-
ments in the table, Adam optimizer [24] was used and a patience of 150 epochs
for early stopping. It was observed in the experiments that larger batch sizes
and increasing the number of neurons in the layers led to a loss of generaliza-
tion capacity and performance and required a greater number of epochs during
training.

For each batch size explored, the hyperparameters and their respective values
for the two performance metrics achieved good prediction performance. The
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Fig. 6. ARIMA model evaluation in data test

best configurations are those with, 2 layers and 5 neurons, and, 2 layers and 10
neurons, all yielding a test R2 above 0.70, as highlighted in Table 2. Furthermore,
as shown in Figure 7, the model has successfully captured the underlying patterns
and dynamics of the time series data, significantly outperforming the ARIMA
model, which did not perform well.

Fig. 7. LSTM model evaluation in data test

For the optimal model, which achieves an R2 value of 0.77 on the test set, the
corresponding R2 value on the training set is 0.64. This discrepancy indicates
an absence of overfitting.
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Table 2. Configurations evaluated for the LSTM model and their metrics.

Train Validation Test
Layers Units Lr Epochs Batch RMSE R2 RMSE R2 RMSE R2

1 10 0,0001 200 4 0,09 0,73 0,16 0,38 0,20 0,29
1 20 0,0001 200 4 0,08 0,78 0,11 0,68 0,17 0,51
1 20 0,0001 200 8 0.09 0.69 0,14 0,53 0,20 0,35
1 40 0,0001 200 4 0,07 0,84 0,12 0,62 0,19 0,41
1 40 0,0001 200 8 0,08 0,79 0,13 0,59 0,20 0,37
1 40 0,0001 200 10 0,08 0,78 0,13 0,60 0,18 0,43
1 40 0,0001 400 8 0,06 0,87 0,13 0,57 0,20 0,34
1 60 0,0001 200 4 0,08 0,84 0,15 0,46 0,22 0,14
1 40 0,001 200 4 0,05 0,92 0,12 0,63 0,15 0,59
1 40 0,001 200 8 0,05 0,90 0,13 0,56 0,17 0,50
1 40 0,001 200 10 0,05 0,90 0,13 0,56 0,19 0,41
2 5 0,001 150 10 0,10 0,67 0,12 0,64 0,17 0,50
2 5 0,001 150 16 0,09 0,73 0,13 0,58 0,18 0,42
2 5 0,001 100 4 0,08 0,78 0,10 0,76 0,12 0,75
2 5 0,001 100 8 0,08 0,77 0,11 0,69 0,17 0,48
2 5 0,001 100 10 0,10 0,64 0,10 0,73 0,12 0,77
2 5 0,001 100 16 0,10 0,62 0,11 0,68 0,14 0,68
2 5 0,001 100 32 0,10 0,64 0,12 0,65 0,18 0,48
2 5 0,001 50 8 0,10 0,63 0,13 0,59 0,17 0,53
2 5 0,001 50 10 0,11 0,55 0,12 0,67 0,14 0,66
2 5 0,001 50 16 0,12 0,45 0,14 0,49 0,19 0,40
2 5 0,001 50 32 0,12 0,51 0,14 0,52 0,18 0,47
2 10 0,001 50 4 0,08 0,77 0,10 0,75 0,12 0,75
2 10 0,001 50 8 0,08 0,76 0,10 0,73 0,14 0,67
2 10 0,001 50 10 0,08 0,75 0,10 0,75 0,13 0,72
2 10 0,001 50 16 0,10 0,67 0,12 0,63 0,17 0,52
2 20 0,001 50 4 0,08 0,78 0,12 0,64 0,17 0,52
2 20 0,001 50 8 0,08 0,75 0,11 0,07 0,15 0,62
2 20 0,001 50 10 0,09 0,68 0,13 0,60 0,17 0,49
2 20 0,001 50 16 0,09 0,71 0,12 0,64 0,17 0,50
2 20 0,001 50 32 0,09 0,72 0,13 0,60 0,19 0,37

5 Conclusions and future work

This paper presents a recurrent artificial neural network architecture for elec-
tricity demand forecasting using a case study of the province of Entre Ríos,
Argentina. In particular, this study innovates by incorporating both histori-
cal energy consumption variables and meteorological variables as inputs to the
forecasting model, providing a comprehensive approach to energy demand fore-
casting. Preliminary results show a consistent level of competence in accurate
demand forecasting. The proposed models achieve a performance of 0.77 in co-
efficient of determination with 0.12 RMSE when comparing predicted electricity
demand with observations. To potentially improve the performance of the mod-
els, it could be beneficial to extend the exploration of the hyperparameters or
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modify the early stopping criteria. Finally, future work could include testing
other deep learning models, such as combining convolutional neural networks
with LSTM, to further improve the accuracy and robustness of electricity de-
mand forecasting.
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