
Teaching SQL New Tricks: Efficient Vector
Indexing with Trigrams

Esteban Rodríguez-Betancourt1 and Edgar Casasola-Murillo2

1 Posgrado en Computación e Informática, Universidad de Costa Rica, Costa Rica
2 Escuela de Ciencias de la Computación, Universidad de Costa Rica, Costa Rica

esteban.rodriguezbetancourt@ucr.ac.cr, edgar.casasola@ucr.ac.cr

Abstract. With the growing use of vector embeddings in areas like nat-
ural language processing and recommendation systems, the need for ef-
fective storage and retrieval methods is increasingly important. However,
deploying specialized databases for vector indexing can be challenging
due to resource limitations or operational constraints. This paper in-
troduces a novel approach that utilizes existing trigram indexes within
SQL databases to efficiently manage vector embeddings. By adapting
traditional relational databases to handle high-dimensional data, orga-
nizations can use their existing infrastructure without the need to invest
in new database systems. This method reduces management complex-
ity and costs associated with maintaining separate systems for vector
data. We outline the process of converting vector embeddings for tri-
gram indexing and evaluate the performance and recall through empiri-
cal analysis. This paper aims to offer a practical solution for researchers
and practitioners seeking to integrate advanced vector-based queries into
their current database systems, thereby enhancing the functionality and
accessibility of vector embeddings in mainstream applications.

Keywords: Databases · Indexes · Natural Language Processing · Word
Embeddings

1 Introduction

Vector databases, which specialize in storing and querying vectors, have seen
growing interest due to advancements in machine learning embedding algorithms
and the availability of these models as easily consumable services through APIs.
For example, nearest neighbor search is an integral part of machine learning
patterns such as retrieval augmented generation (RAG).

As interest in vector databases grows, many are likely to seek integration
of this technology into their existing services. Unfortunately, not all databases
natively support vector indexing. This feature may be absent, require a paid
extension, or be unavailable in the current system’s version — leaving users
with outdated software or providers who do not offer the necessary plugins.
Alternatively, installing a dedicated vector database, such as ElasticSearch [5],
Milvus [15], Weviate [16], or Chroma [3], is an option. However, this approach
adds operational overhead and costs, which may not be feasible for all teams.

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 150



In this study, we present a straightforward method to leverage Trigram in-
dexes to add approximate nearest neighbor functionality to databases. Such
kinds of indexes are usually used for text search, so they are commonly available
in many database systems. In this case, we propose to use trigram indexes for in-
dexing a locality-sensitive hashing (LSH) representation of the embeddings. We
show that this solution is competitive in index size and insert time compared to
other methods, while still providing good precision and recall.

In the next section, we provide definitions and review previous work on vector
indexing. Subsequently, in the methodology section, we detail our approach for
implementing a vector index using trigram indexes. In the results section, we
show our obtained results for index size, insertion duration, precision, recall, and
query duration. Finally, at the conclusion section, we summarize our learnings
while doing this study and present possible future work venues.

2 Definitions and Previous Work

An embedding is a dense representation that summarizes the meaning of an
entity. For example, training word2vec [13] generates word embeddings, grouping
words with similar meanings into proximate vector spaces. These embeddings are
dense vectors of a defined dimensionality, allowing us to employ metrics such as
cosine distance to compare different embeddings and thus measure the similarity
between entities.

The use of embeddings extends beyond words to include images [14], doc-
uments [10], and speech [1]. This facilitates converting various data types into
vectors, simplifying the indexing process. By using distance metrics like cosine
distance, we can find very similar entities to a given one.

Currently, while we can identify similar entities by comparing their embed-
dings, this method is feasible only for small datasets. At larger scales, the O(n)
complexity of this approach becomes impractical, requiring a more efficient way
to filter out irrelevant entities. Due to the curse of dimensionality, traditional
data structures like KD-Trees or R-Trees are ineffective for high-dimensional
embeddings. As a result, we must use approximate algorithms such as Locality-
Sensitive Hashing (LSH) [6], inverted indexes, product quantization [8], or Hier-
archical Navigable Small World (HNSW) graphs [11] for scalable solutions.

There are numerous libraries and databases that can efficiently index vec-
tors. Examples include the Faiss library [4], Annoy [2], and DiskANN [7]. Some
databases designed for storing vectors and retrieving approximate nearest neigh-
bors include ElasticSearch [5], Milvus [15], Weviate [16], and Chroma [3], among
many others. Traditional SQL databases have also integrated these capabili-
ties through plugins. For instance, PostgreSQL supports vector indexing via
the vector extension [9]. Other SQL databases, such as Oracle (added in the
23c version) and MySQL (through extensions from vendors like Google or Plan-
etScale), offer similar functionalities. For SQL Server, although there is no native
support for vector search, suggested recipes exist to implement it using existing
functionality and query optimizations [12].

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 151



In this article, we leverage existing trigram index functionality to implement
approximate neighbor searches for vectors. We utilize an approach based on Ran-
dom Projection LSH, encoding the resulting hash so it can be readily retrieved
using trigram indexes intended for full-text search. The detailed methodology is
presented in the following section.

3 Methodology

Our proposed method is based on Random Projection LSH, where we map an
embedding into a smaller dimensional space. The initial step involves creating
N random hyperplanes. For each hyperplane, we determine on which side the
embedding lies using a straightforward matrix multiplication operation. Each
side is then encoded: ‘0’ denotes the embedding is on the side opposite to the
origin, and ‘1’ indicates it is on the same side as the origin.

Upon obtaining an array of N sides, appropriate encoding is crucial for lever-
aging the existing trigram indexing mechanism. Initially, we considered repre-
senting the number in hexadecimal; however, this approach was found to dimin-
ish recall in our tests. Consequently, we opted for a binary representation with
a modification: instead of uniformly using the digits ‘0’ and ‘1’ for all sides, we
alternated the symbols after each group of three sides. The first trio used ‘0’/‘1’,
the second ‘2’/‘3’, and the third ‘4’/‘5’, continuing in this pattern. When we
reach the end of the available symbols (say, ‘x’/‘y’ if restricted to base 36), we
change the approach. At this point, we use ‘0’/‘1’ for the first element in the trio,
‘2’/‘3’ for the second and ‘4’/‘5’ for the third. For subsequent trios, we continue
this process but start with the next unused symbols, skipping the first two sym-
bols used in the previous trio. This cycling of symbols prevents collisions in the
trigram index, thereby ensuring that all trigram matches are indeed accurate.

For a practical implementation, the Python code below outlines the encoding
process, as illustrated in Figure 1.

4 Results

For evaluating our proposed method, we implemented it in a PostgreSQL database
using the pg_trgm extension. All tests were conducted on a system equipped with
an Apple M2 processor and 8 GB of RAM, running PostgreSQL 16.2. We com-
pared our method against three other algorithms implemented via the vector
extension: full scan, HNSW index, and IVF-Flat. A total of 25000 embeddings
from a word2vec model trained on the Google News dataset, with each embed-
ding having 300 dimensions (“word2vec google news 300”), were used in each
test.

4.1 Insertion Duration and Index Size

We added a total of 25000 words with their respective embeddings or projec-
tions, in batches of 1000 words. Indexes were created before data insertion. The

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 152



1 def project(word):
2 return PROJECTIONS.T @ embeddings[word]
3

4 def project_to_bits(word):
5 return (project(word) > 0).astype(int)
6

7 symbols = "0123456789 abcdefghijklmnopqrstuvwxyz"
8 increase = np.array ([
9 0, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6,

10 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14,
11 16, 16, 16, 18, 18, 18, 20, 20, 20, 22, 22, 22,
12 24, 24, 24, 26, 26, 26, 28, 28, 28, 30, 30, 30,
13 32, 32, 32, 34, 34, 34, 0, 2, 4, 2, 4, 6,
14 4, 6, 8, 6])
15

16 def project_to_binary36(word):
17 bits = project_to_bits(word)
18 pattern = bits + increase
19 return "".join(symbols[p] for p in pattern)
20

Fig. 1. Encoding of vector as a random projected LSH string optimized for trigram
indexes

duration of insertion and the index size for each technique are detailed in Table
1. As expected, not having an index resulted in the fastest insertion, followed
by IVF-Flat. Our proposed method had a slower insertion time than IVF-Flat,
but was significantly faster than HNSW. However, our method resulted in the
smallest index size.

Table 1. Insertion duration and index size per technique for 25k elements

Technique Insertion time Index size
No index 1.1 seconds -
Projection 9.1 seconds 7488 kB
HNSW 61.1 seconds 39 MB
IVF-Flat 1.9 seconds 33 MB

4.2 Precision and Recall

For the evaluated techniques, we calculated the precision and recall for 500 of
the embeddings. Here, precision is defined as the percentage of returned words
whose embeddings have a cosine similarity higher than 0.75 with the queried
word. Recall is defined as the percentage of all words with a cosine similarity

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 153



higher than 0.75 that were returned by each method. The results are summarized
in Table 2. As shown, the average precision was 100% for all evaluated methods.
However, while the recall of our proposed method was lower overall, its P50
recall matched the others. A histogram of the recall is shown in Figure 2(a).

Table 2. Precision and recall per method

Method Average Precision Average Recall P50 Recall
Projection 1.0 0.79 1.0
HNSW 1.0 1.0 1.0
IVF-Flat 1.0 1.0 1.0

0.25 0.50 0.75 1.00
Recall

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Histogram of Recall for Projection Index

(a) Histogram of the recall of the pro-
posed projection method

0.175 0.200 0.225 0.250 0.275
Duration (seconds)

0

20

40

60

80

100

120

140
Fr

eq
ue

nc
y

Query Duration for Projection Index

(b) Histogram of query duration for pro-
posed projection method

Fig. 2. Performance metrics of the proposed projection method

4.3 Query Duration

Finally, we evaluated the duration of each query. It’s important to note that
the volume of rows was relatively low, so even a full scan was quite fast. Un-
fortunately, we refrained from adding more rows as the HNSW index failed to
complete insertion due to memory limitations. A summary of the query dura-
tions is shown in Table 3. Additionally, a histogram of the query duration for
the proposed projection method is shown in Figure 2(b).

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 154



Table 3. Query duration per method

Method Mean Query Duration Max Query Duration
Full scan 0.009851 seconds 0.035398 seconds
Projection 0.213942 seconds 0.277053 seconds

HNSW 0.010304 seconds 0.028348 seconds
IVF-Flat 0.010025 seconds 0.017835 seconds

5 Results Discussion

Among the methods evaluated, it is evident that our proposed method exhibits
slower query times and lower recall compared to other indexing methods imple-
mented in PostgreSQL. However, it generates a smaller index and has a shorter
insertion time than the HNSW method, which can be advantageous in environ-
ments managing a large number of embeddings.

We have demonstrated that it is feasible to implement a vector retrieval sys-
tem using the existing trigram index functionality within a PostgreSQL database,
tested against other vector-specific techniques. While it would clearly be prefer-
able to use a custom-built index integrated directly into the database, our pro-
posed methodology could be particularly beneficial for developers who are unable
to upgrade their system, lack access to these advanced indexing extensions, or
are working with databases that do not currently support such functionality.

6 Future Work

Because of memory constraints in our available machines, we restricted our tests
to just, 25000 embeddings. We should test it in a system with more memory,
so we can properly stress all the methods, including the full table scan. Addi-
tionally, we would want to evaluate this technique in distributed databases like
CockroachDB or Yugabyte, that currently do not support indexing vectors.

7 Conclusion

This study has introduced an innovative approach to embedding retrieval using
the trigram index functionality within a PostgreSQL database. Our proposed
method leverages Random Projection LSH combined with a unique encoding
system to manage vector embeddings efficiently. Despite the slower query per-
formance and slightly lower recall compared to traditional vector indexing meth-
ods like HNSW and IVF-Flat, our approach benefits from a significantly smaller
index size and reduced insertion time.

The practical implications of our research are particularly relevant for envi-
ronments constrained by system upgrades or those lacking access to specialized
indexing extensions. By utilizing the readily available trigram indexing found
in many SQL databases, developers can implement a functional vector retrieval
system without the need for additional, often costly, infrastructure changes.

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 155



For future work, we aim to expand our testing to include larger datasets and
more complex query scenarios. This will help to better understand the scalability
and robustness of our method. Additionally, exploring the integration of this
approach into distributed databases such as CockroachDB or Yugabyte, which
currently do not support vector indexing, could broaden the applicability of our
findings. Ultimately, our goal is to enhance the accessibility and efficiency of
vector search technologies in conventional database systems, facilitating broader
adoption and application in diverse computational environments.

References

1. Baevski, A., Hsu, W.N., Xu, Q., Babu, A., Gu, J., Auli, M.: data2vec: A general
framework for self-supervised learning in speech, vision and language (2022)

2. Bernhardsson, E., et al.: GitHub - spotify/annoy: Approximate Nearest Neigh-
bors in C++/Python optimized for memory usage and loading/saving to disk —
github.com. https://github.com/spotify/annoy (2013), [Accessed 21-04-2024]

3. Chroma: the AI-native open-source embedding database — trychroma.com. https:
//www.trychroma.com/, [Accessed 21-04-2024]

4. Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P.E., Lomeli,
M., Hosseini, L., Jégou, H.: The faiss library (2024)

5. Elasticsearch B.V.: Elasticsearch vector search - highly relevant, lightning fast
search — elastic.co. https://www.elastic.co/enterprise-search/vector-search, [Ac-
cessed 21-04-2024]

6. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of the 25th International Conference on Very Large Data
Bases. p. 518–529. VLDB ’99, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1999)

7. Jayaram Subramanya, S., Devvrit, F., Simhadri, H.V., Krishnawamy, R.,
Kadekodi, R.: Diskann: Fast accurate billion-point nearest neighbor search on a
single node. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32.
Curran Associates, Inc. (2019), https://proceedings.neurips.cc/paper_files/paper/
2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf

8. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1),
117–128 (2011). https://doi.org/10.1109/TPAMI.2010.57

9. Kane, A., et al.: GitHub - pgvector/pgvector: Open-source vector similarity search
for Postgres — github.com. https://github.com/pgvector/pgvector, [Accessed 21-
04-2024]

10. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 1188–
1196. PMLR, Bejing, China (22–24 Jun 2014), https://proceedings.mlr.press/v32/
le14.html

11. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs (2018)

12. Mauri, D.: Vector Similarity Search with Azure SQL database and OpenAI -
Azure SQL Devs’ Corner — devblogs.microsoft.com. https://devblogs.microsoft.

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 156

https://github.com/spotify/annoy
https://www.trychroma.com/
https://www.trychroma.com/
https://www.elastic.co/enterprise-search/vector-search
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2010.57
https://github.com/pgvector/pgvector
https://proceedings.mlr.press/v32/le14.html
https://proceedings.mlr.press/v32/le14.html
https://devblogs.microsoft.com/azure-sql/vector-similarity-search-with-azure-sql-database-and-openai/


com/azure-sql/vector-similarity-search-with-azure-sql-database-and-openai/,
[Accessed 21-04-2024]

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
representations of words and phrases and their compositionality. In: Burges,
C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Ad-
vances in Neural Information Processing Systems. vol. 26. Curran Asso-
ciates, Inc. (2013), https://proceedings.neurips.cc/paper_files/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf

14. Reddy, P., Gharbi, M., Lukac, M., Mitra, N.J.: Im2vec: Synthesizing vector graph-
ics without vector supervision (2021)

15. Wang, J., Yi, X., Guo, R., Jin, H., Xu, P., Li, S., Wang, X., Guo, X., Li, C., Xu, X.,
Yu, K., Yuan, Y., Zou, Y., Long, J., Cai, Y., Li, Z., Zhang, Z., Mo, Y., Gu, J., Jiang,
R., Wei, Y., Xie, C.: Milvus: A purpose-built vector data management system.
In: Proceedings of the 2021 International Conference on Management of Data. p.
2614–2627. SIGMOD ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3448016.3457550, https://doi.org/10.1145/
3448016.3457550

16. Weaviate, B.V.: Welcome | Weaviate - Vector Database — weaviate.io. https:
//weaviate.io/, [Accessed 21-04-2024]

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 157

https://devblogs.microsoft.com/azure-sql/vector-similarity-search-with-azure-sql-database-and-openai/
https://devblogs.microsoft.com/azure-sql/vector-similarity-search-with-azure-sql-database-and-openai/
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/3448016.3457550
https://weaviate.io/
https://weaviate.io/

	Teaching SQL New Tricks: Efficient Vector Indexing with Trigrams

