
Enhancing Flexibility in V2B Applications with
Renewable Energy Resources

Maximiliano Trimboli, Nicolás Antonelli and Luis Avila

Laboratorio de Sistemas Inteligentes, CONICET-UNSL
mdtrimboli@unsl.edu.ar, nantonelli@unsl.edu.ar and loavila@unsl.edu.ar

Abstract. The incorporation of EV parking within vehicle-to-building
(V2B) frameworks signifies not only a technological evolution but also a
pivotal step towards constructing smarter and environmentally friendly
urban environments. This initiative actively contributes to the optimiza-
tion of system resources while also enabling the incorporation of renew-
able energy resources. In this study, we propose the development of rein-
forcement learning (RL) algorithms for the management of smart parking
lots, aiming to minimize building energy purchases from the grid while
ensuring efficient charging of EVs. The proposed methods obtained a
15% to 17% improvement in the evaluation reward in comparison with
rule based method as a benchmark. In the realm of grid energy, they
saved 9 to 11% in average purchase cost. In essence, these algorithms,
after training, make more efficient decisions than more traditional control
methods while ensuring electric vehicle (EV) charging.

Keywords: Electric vehicles · Smart Charging · Renewable Energy ·
Reinforcement Learning.
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1 Introduction

The widespread adoption of EVs brings significant benefits, with a notable re-
duction in harmful emissions being paramount. As e-mobility continues to surge,
investments in battery technologies and charge point infrastructures are also on
the rise. Among the numerous challenges to address, those linked to changes
in energy consumption behaviors associated with evolving charging processes
are particularly crucial. Challenges also include difficulties in identifying charg-
ing locations during daylight hours, rising infrastructure and equipment costs,
and potential overloads during peak periods. All of these constitute critical con-
siderations for advancing EV charging infrastructure. As our society aspires to
inhabit increasingly interconnected cities, the development of smart infrastruc-
ture must span various domains, including smart buildings, mobility solutions,
energy systems, and monitoring of water and air quality [1]. In such scenarios,
the implementation of smart parking can mitigate harmful emissions by incor-
porating renewable energy sources, predominantly through the integration of
solar arrays [2]. Furthermore, the large-scale integration of EVs is expected to
enhance sustainability by providing energy storage and creating new revenue
sources from the EVs’ batteries [3].

The integration of EV technologies not only demands policies fostering sus-
tainability and grid stability but also initiatives encouraging user participation.
For instance, prolonged waiting times at charging stations can significantly delay
the recharging process, potentially dissuading consumers from opting for environ-
mentally conscious mobility. Moreover, uncoordinated charging strategies within
a limited charging infrastructure may contribute to increased demand peaks on
the grid. Therefore, charge management algorithms will play a crucial role in
maximizing the potential of smart structures [4]. Ultimately, the substantial en-
ergy demands at charging terminals could strain electrical systems, potentially
diminishing service quality. In a study by [5], Moghaddam et al. (2017) designed
a charging strategy to address these concerns by providing multiple charging op-
tions, modeling the optimal charging station as a multi-objective optimization
problem. Additionally, [6] Bose et al. (2023) utilized classical topology results to
formulate a new charging station placement algorithm in the context of smart
cities.

Considering that EVs can offer flexibility to support the operation of elec-
trical systems in smart buildings, the concept of utilizing parked EVs as energy
storage devices is exceedingly attractive [7, 8]. However, the introduction of EVs
also introduces uncertainty into the grid, as, with the Vehicle-to-Building (V2B)
functionality [9], they can provide energy to the building loads by discharging the
battery. In this context, the works of [7] and [10] assess the utilization of parked
EVs to shave the peak load in building-integrated microgrids. The former devel-
ops an optimization framework to control the microgrid’s operation and manage
power flow exchanges, ensuring a high quality of service to EV owners. The lat-
ter predicts the day-ahead building electricity demand profile and identifies the
optimal schedule for charging and discharging EVs to minimize electricity peak
demand.
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Due to the ability of EVs to provide power to building loads by discharg-
ing the battery during high consumption peaks, it is possible to reduce energy
consumption and greenhouse gas emissions, moving towards nearly-zero energy
buildings. However, it should be noted that the arrival and departure times of
EVs add uncertainty to the grid. As a result, it becomes clear that the devel-
opment of suitable algorithms to control and optimize the charging/discharging
process is crucial for the smooth integration of parked units into the building
power grid.

In this study, we use a virtual environment to simulate the charging dynam-
ics of grid-connected electric vehicles in a smart building. The model reproduces
various conditions, such as disturbances, weather conditions, pricing models, and
stochastic arrival and departure times of electric vehicles. By providing control
over multiple charging points per vehicle, it provides insight into the underlying
dynamics and their impact on the energy efficiency of the building. The main ob-
jective is to minimize the electricity costs that the smart building absorbs from
the grid by employing parked EV batteries as flexible resources. A central energy
manager is in charge of the power supply to the EVs and building loads, harness-
ing the EVs’ stored energy to meet demands and avoid peak loads. Evaluation
of the RL algorithms within the simulated environment showed savings of up
to 4.5% in terms of energy and up to 13.2% in associated costs, indicating that
these algorithms make more efficient charging station management decisions.

In the next section, we present the virtual environment that simulates the
operation of a charging station considering random arrivals and departures of
EVs. In section 3, we present the RL formulations aimed at achieving efficient
charging control, optimizing energy consumption, reducing environmental im-
pact and maximizing user satisfaction. In section 4, we present the experimental
results obtained, and in section 5, we offer some concluding remarks.

2 Charging station model

This work implements a simulated model depicting the operations of a smart
parking facility, interconnected to two core components: a photovoltaic genera-
tion system and a grid connection responsible for supplying unlimited energy to
a series of electric vehicle charging stations within a building. The architecture
of the simulated system is shown in Fig. 1.

The photovoltaic generation system is composed of 40 solar cells that provide
the occupied parking spaces with a maximum energy of 60 kWh that depends
solely on a fixed daily solar irradiance profile. When the system does not have
sufficient capacity to self-supply the energy demand of the batteries in addition
to the demand of the building, the smart manager has the option to purchase
electricity from the connection to the grid. The grid distribution company sets
a variable price profile throughout the day, independent of the consumption
behavior of the smart parking system. In addition, due to the V2B functionality
of EVs, the model supports the energy transfer between batteries connected
to the parking spaces, in combination with the use of the electrical sources

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 225



Fig. 1. Model energy flow diagram.

mentioned above. It is possible that the renewable energy generated is greater
than the energy demand, in which case the remaining energy is considered wasted
energy because the system is not able to use it.

The smart manager is in charge of interacting with the aforementioned sec-
tions and making decisions based on the energy flows, in order to meet its main
objectives, minimizing the costs derived from energy purchases from the grid and
correctly carrying out the charging processes to the parked EVs. This task is car-
ried out by only defining which EV batteries to charge and which to discharge
at each time step, thus implicitly interfering in the moments when purchases of
electrical energy are made from the grid.

We assume that a single spot can perform the charging process of more
than one EV throughout the day. It should be noted that the batteries of
the EVs in the parking area always have the same manufacturing character-
istics, therefore they have the same hyperparameters. Moreover, the maximum
charging/discharging speed of the EVs is determined by the characteristics of
the charging spot itself, i.e., all EVs entering the spots can support the charg-
ing/discharging speed of the parking area and from (1), the smart manager can
predict the charging status of each vehicle in the resp. next hour.

SoCi
t+1 = SoCi

t +
Ei

demt

Cbat
(1)

where SoC is the state of charge, Edem is the energy required or available from
the battery and Cbat is the battery capacity. For each variable the superscript
i indicates the corresponding vehicle and the subscripts t and t+ 1 the current
and next hour. In this way the SoC is modified by the energy demanded over
the battery capacity, this is a kind of propotion of the energy that the battery
will be charged/discharged with respect to the maximum energy it can store.

3 Intelligent energy management

In this section, advanced RL methods for smart energy management will be
explored. We will examine two specific approaches: Deep Deterministic Policy
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Gradient (DDPG) algorithm, which combines deep learning techniques and de-
terministic policies, and Proximal Policy Optimization (PPO) algorithm, known
for its ability to balance exploration and exploitation of policies, thereby en-
hancing efficiency and robustness in energy management.

3.1 Deep deterministic policy gradient (DDPG)

DDPG algorithm uses features of a method known as Deep Q-Network (DQN)
and extends it to a multidimensional continuous action domain by combining it
with the deterministic policy gradient (DPG) [11]. Thus, it obtains a determinis-
tic action µθ(s), where s is the current state, through an actor-critical approach
without the need for prior knowledge of the policy gradient-based model to de-
termine in which direction parameters should be adjusted in pursuit of improved
performance outcomes.

The method is minimally conformed by two deep neural networks: the actor
network pi(st, θ) that represents the agent’s policy to determine the actions to
be performed at to be executed in the state st, where θ is the network parameter,
and the critical network that is used to evaluate the actions executed during the
corresponding states, by calculating state-action functions Q(s, a). In addition,
DDPG adds two other networks called target networks in order to improve the
learning stability in the actor-critical system.

The gradient policy is computed based on the critic’s evaluation, and the
actor parameters are adjusted to improve decision making. The optimization of
the critic model is based on a loss function dependent on the difference between
the actual reward and the critic’s estimate.

3.2 Proximal Policy Optimization (PPO)

PPO is a policy gradient algorithm that uses in the objective function, the ratio
of probabilities of the previous and current policy given a state-action pair, to
improve training efficiency and reuse sampled data. In this way, quantifying
the importance of the chosen action under the current policy compared to the
previous policy limits the magnitude of policy updates during training, thus
contributing to the stability of the algorithm [12, 13].

The general form of the optimization objective function is given by:

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2)

where rt(θ) is the probability ratio mentioned above, Ât is the advantage value
representing the difference between the value of the action taken and the average
value in the current state, and this is another term that improves the stability
and convergence speed since it can reduce the variance of the gradient estimation.

Unlike the DDPG, the PPO algorithm focuses on stochastic policies, where
the action is obtained randomly from a sample of a probability distribution. This
implies a wider range of exploration since the agent can explore different actions
according to the probability assigned by the policy.
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4 Experiments

This section presents the validation process of the proposed system through an
experimentation stage on the simulated environment, which maintains certain
conditions and hyperparameters to obtain a consistent performance comparison.

The main hyperparameters of the environment are shown in Table 1. Con-
cerning vehicle arrivals and departures, the movements are randomly defined at
the beginning of the simulation, therefore, the times that the vehicles stay at
the stations are variable. The times are limited both for entry (from 0 hs to 20
hs) and withdrawal (between 4 hs and 10 hs after arrival), as well as the SoC
values at which vehicles arrive at the parking area. The maximum net energy
that a parking spot can carry is 10 kWh, which means that a vehicle requires 3
hours to fully charge its battery (SoC from 0 to 100%, Cbat de 30kWh).

Regarding the proposed RL algorithms, the main hyperparameters used dur-
ing the training stage, optimized by means of heuristic processes, are detailed in
the tables 2-3.

Table 1. Main hyperparameters of the environment.

Symbol Variable Range
SoC0 Initial Charge State [20%, 50%]
h0 Arrival time range [0, 20]
hf Departure time range [h0+4, h0+10]
Cbat Individual capacity of EVs 30KWh
Ei

ut
Maximum net energy 10 KWh

Pchmax Maximum load power 11KW
ηch Charging/discharging efficiency 0.91
Npv Number of solar cells 20
Ppv Nominal photovoltaic power 10KW

4.1 Environment formulation

Since the proposed system was formulated under an MDP process, the following
sections specify the elements that define their corresponding tuple.

State space: according to (3), the state at each time step is defined by the
current value of the radiation and the prediction of what values it will have
for the next 3 hours (Gt), similarly happens with the purchase price of energy
from the grid and building consumption, incorporating current values and their
predictions (Prt and Bct). All these values do not vary across episodes the state
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Table 2. Main hyperparameters of the DDPG algorithm.

Symbol Designation Range
σ Actor network layers [356, 128]
ρ Critical network layers [356, 128, 32]
eDDPG DDPG epochs 800
mDDPG Steps by epochs in training 1200
BDDPG Buffer memory size 100000000
NDDPG Batch size 2048
γ Discount factor 0.99
ηch Actor and critic learning rate 0.0003
ϵDDPG Action noise range 0.1

Optimizer Adam

Table 3. Main hyperparameters of the PPO algorithm.

Symbol Designation Range
H Number of hidden layers 128
sPPO PPO steps 480000

Policy distance Gaussian
NPPO Batch size 2048
ηch Actor and critic learning rate 0.0003
γ Discount factor 0.99

of charge of each car SoCi
t , T leaveit, unlike SoCi

t and T leaveit which represent
the state of charge of the i-th position at the t-th step and the number of hours
remaining until each car’s departure, in case any spot is empty, both variables
acquire a zero value. All these values are normalized between 0 and 1 before
starting the agent training, in order to facilitate a fast and efficient learning
optimization, reducing the computational cost of the algorithms.

st = (Gt, prt, Bct, Gt+1, Gt+2, Gt+3, P rt+1, P rt+2, P rt+3,

Bct+1, Bct+2, Bct+3, SoC
i
t , T leave

i
t) (3)

Action space: the action set A is defined by the charge/discharge rates of each
post, with a total of 10 continuous variables constrained in the space [-1, 1], the
action expresses the degree of energy transfer at a given post in a given time,
where each value is positive during the charging mode of the corresponding EV
battery, and negative during the discharging mode. If the agent interprets that
a maximum charging mode is required then it will assign an action of 1, on the
other hand, if it decides to discharge the battery as fast as possible, the action
will be -1. Based on this action, the environment calculates, via (4), the net
energy of the battery, which represents the energy required (how much remains
to be charged when the action a > 0) or available (how charged it is when the
action a < 0).
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Ei
nt

=

 (1− SoCi
t)Cbat if ait ≥ 0

(SoCi
t)Cbat if ait < 0

(4)

At the same time, the net energy that can be transferred in the i-th vehicle in
a time t is bounded by the characteristics of the charging spot and is represented
as:

Ei
nt

≤ Pchmax
ηcht (5)

here Pchmax
is the maximum charging power, ηch is the charge/discharge effi-

ciency and t is the time.
On the other hand, the energy demanded from an EV in a time t is given

by the maximum energy transfer it can perform and the charging or discharging
rates of the EV, in other words it depends on the energy of the battery and what
the manager deems necessary to transfer.

Ei
demt

= aitE
i
nt

(6)

As can be seen in (6), the action directly affects the calculation of the energy
demand, and therefore, in an implicit way allows to control the moments to make
purchases of electric energy from the grid.

Reward function: the reward function under state St and performing action
At has a first term associated to the energy purchase, which penalizes the agent
each time it gets energy from the grid, the same is formed by the amount of
energy purchased from the grid multiplied by the price at each time step t;
and a second term related to the charging process, where the Evs must reach
the desired state of charge (SoC = 100 %) before departing to avoid being
penalized. The summation shown in (7) over the price of purchased energy takes
into account the i-th spot belonging to Ω, being this the set of all charging spots
and the i-th EV belonging to Φ, which is the set of EVs that must depart at the
current time step, i.e. only the charging state of those cars is taken into account.

rt(St, At) = −((
∑
i∈Ωt

(prtE
i
demt

) +Bct −Gtrent) +
∑
i∈Φt

[2.(1− SoCi
t)]

2) (7)

where Bct and Gtrent
are the building consumption and renewable energy gen-

eration at this time step.
The fact that both terms are larger when the situation is less desirable implies

that the agent must be trained to learn an optimal policy that minimizes the
function. A very large negative value may imply that the demand for energy
coming from the grid is very large and/or that cars left the parking area with
a very low SoC value; and as a contraposition, a minimum reward value means
that at a time step t there was no energy purchase and the departing EVs are
fully charged (SoC = 100 %).
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4.2 Reference method

To compare the effectiveness of the proposed methods, a reference algorithm
known as "Rule-Based Controller" (RBC) [12], which is characterized by low
computational requirements, good real-time performance and stability, based on
the definition of a set of deterministic rules, was included in the experimental
stage.

In this case, the method is composed of only two rules:

ait =

{
1, if T leaveit ≤ 3

1/2(Gt +Gt+1), otherwise (8)

At each spot the departure time of each vehicle is reviewed. If the remaining
time to departure time is less than 3 hours then the charging rate is maximized
so that the EV can charge to maximum capacity and thus be able to reach the
maximum SoC before the EV proceeds to departure. On the other hand, if the
departure time is more than 3 hours away, the action is dependent solely on
the current irradiance values and their prediction in the next hour. The hourly
values defined for the RBC were selected from empirical tests.

4.3 Experimental results

This section shows the results obtained during the experimentation of the algo-
rithms presented in Section 3 in comparison with the reference method proposed
in Sect. 4.2.

To compare the effectiveness between the models, we first took into account
the reward obtained by the RL agents during training performed under random
conditions, since they are methods that require a learning process. Whereas, the
comparison method (rule-based control) is exempt from this stage.

Fig. 2 shows the evolution of the average episodic reward of the RL methods
throughout a training process, where although it can be noticed that clearly the
PPO has a considerably more stable curve, with less uncertainty in the first half
of the learning and stabilizes much earlier than the DDPG, the same one reaches
a slightly suboptimal policy.

Once the agents converged to a given policy during learning, a comparison
was made with the RBC method during the evaluation of a full day simulated
with the same conditions for the three algorithms, calculating the average of the
rewards obtained during this process. The values achieved are shown in Table
4, where an improvement of both algorithms belonging to deep RL with respect
to RBC can be seen, representing a reduction of up to 17.49% in the average
episodic penalty.

Since the comparison of algorithms via reward only gives us a general overview
of which methods perform better than others based on the defined reward func-
tion, the electrical behaviors of the system under each smart manager were
additionally evaluated. Particularly the energy flow (renewable, purchased and
stored energy) and the vehicle charging process were examined in more detail.
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Fig. 2. Average episodic reward through the learning process.

Table 4. Average reward of the methods during evaluation.

Method Average reward
DDPG -16.08
PPO -16.44
RBC -19.49

Starting with the RBC algorithm, Fig. 3(a) shows the useful energy (energy
from EVs, grid energy and renewable energy plotted in cyan, blue and green bars
respectively), and the management behaviour of the system (orange curve is the
energy consumption by smart building (SB), cyan curve is the stored energy in
EVs and gray curve is the total consumption). In addition, the energy purchase
price is shown as a red curve. As can be seen, the energy acquired by EVs is
directly proportional to the renewable energy available due to the dependency
on the irradiance, given the rules defined in (8). In other words, during sun
exposure, the EVs are charged even if they are not close to retiring.

Figure 4 shows graphs corresponding to the 10 charging stations, where each
one has a blue curve representing the SoC of the EVs parked in the respective
station, and a green curve describing the presence of the vehicle. It is important
to hightlight that there is a drastic increase in the slope of the SoC when the
vehicle is close to leaving (T leave < 3), corresponding with the first term of (8).
In most cases, the EV is fully charged long before departure. However, if the EV
exits before the panels start generating energy or if the time in which the EV
remains charging is very short, the vehicle may not be fully charged.

As a consequence of RBC behaviour, the energy demand is too high, as can
be seen in Table 5, where the agent required to purchase 529 kWh of energy,
with a cost of $38.21, which represents an average purchase of 0.072 $/kWh. It
can be deduced that the policy prioritizes vehicle charging over energy purchase
management.

According to Fig. 3(b), unlike the RBC, the PPO agent decides to buy more
energy when the price is lower. At the same time, the agent has no choice but to
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Fig. 3. (a) Percentage of energy consumption by RBC; (b) Percentage energy con-
sumption by PPO; (c) Percentage energy consumption by DDPG.

Fig. 4. EV charging process using RBC. Presence=1 means the existence of EV in the
parking area and Presence=0 means the absence of EV in the parking area.

Table 5. Purchased energy quantity and its cost during evaluation.

Method Purchased energy [kWh] Total Cost [$] Average cost [$]
RBC 529.86 38.21 0.072
PPO 530.63 33.97 0.064
DDPG 505.94 33.15 0.065

buy energy given the overlap of the decrease of available renewable energy with
the massive departure of many vehicles. Despite this, through V2G functionality,
the agent produces a marked difference with RBC regarding the charging stabil-
ity of the EVs, even generating that at times the 10 charging spots are delivering
more energy than they consume, that energy added to the renewable energy still
available allows to supply almost completely the consumption of the building.
This action is clearly noticeable in the hours where the energy flow curve of the
EVs has negative values, at those times the amount of energy delivered by the
vehicles is the same amount absorbed by the building.

The agent takes greater preponderance in managing energy purchases from
the grid, hence some vehicles may retire without reaching the maximum SoC.
This behavior is observed in Fig. 5 and Table 5, where the amount of energy
purchased from the grid is the highest obtained in the tests, but with a cost of
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$33.97, which is a decrease of 11% with respect to the RBC. Consequently, the
average purchase price is 0.064 $/kWh.

Fig. 5. EV charging process using PPO. Presence=1 means the existence of EV in the
parking area and Presence=0 means the absence of EV in the parking area.

Finally, the DDPG algorithm also takes advantage of hours with lower prices
to purchase energy and, during higher cost hours, grid energy use is reduced,
reaching zero on several occasions (see Fig. 3(c)). However, higher demand is
observed during hours with low renewable energy and a large number of vehicles
about to leave the parking area. It can be seen that the energy stored in the
EVs is very low during high price hours, not exceeding 20 kWh. Thus, the most
part of the energy purchased by the agent during these hours is intended to
supply the building consumption, based on the prediction of the agent that the
renewable energy is not able to supply.

Meanwhile, similar stability to that shown in PPO can be observed in Fig. 6,
which despite not reaching a SoC of 100 % in all vehicles, the behavior shows that
the agent has learned to regulate the charging speed of each stall depending on its
departure time without neglecting the efficiency of energy purchase. Therefore,
like the PPO algorithm, the DDPG has a tendency to buy cheaper energy above
the EV load. In the table 5, it is observed that the DDPG agent purchased 505
kWh of energy, 4.5% less than RBC, with a total cost of $33.15, a decrease of
13%. This is reflected in the average cost of energy purchased of $0.065/kWh.

A detail to take into account is that both the DDPG and the RBC have EV
energy storage peaks in hours 4 and 5, while the PPO algorithm does not seem
to suffer this increase in demand, added to the fact that it has the graph with
the lowest variation in EV energy consumption, it could mean that it is able to
manage more efficiently the energy flow throughout the episode.

5 Conclusion

The integration of EV charging stations within V2B frameworks signifies not
just technological evolution but also a crucial advancement toward the creation

ASAID, Simposio Argentino de Inteligencia Artificial y Ciencia de Datos

Memorias de las 53 JAIIO - ASAID - ISSN: 2451-7496 - Página 234



Fig. 6. EV charging process using DDPG. Presence=1 means the existence of EV in
the parking area and Presence=0 means the absence of EV in the parking area.

of smarter and more eco-friendly cities. This effort actively contributes to the
optimization of system resources and, meanwhile, facilitates the integration of
renewable energy sources. In this study, we implemented RL based control strate-
gies for the management of smart parking lots. The main goal was to minimize
building energy purchases from the grid while ensuring the efficient charging of
EVs.

The RL algorithms demonstrated substantial improvement compared to the
reference controller, achieving improvements in evaluation reward from 17 % to
19 %. Savings in energy metrics were also achieved, with energy cost reductions
of over 9 % and up to 11 %. In essence, these algorithms showed more efficient
decision making compared to other energy allocation methods, ensuring efficient
EV charging.

Future work involves incorporating dynamic prices mechanisms that enable
the design of strategies aiming to balance supply and demand in the building.
This includes the rapid integration of renewable energy resources, mitigating
demand peaks, and preventing power blackouts. Given that communication is
crucial for optimizing information flows, fundamental concepts of established
and emerging descentralized protocols based on blockchain for communication
in smart grids will be evaluated. Transactive energy management may enable
faster bidirectional energy transfer and optimize demand-side resources through
the use of decentralized intelligent equipment.
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