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Abstract. We present a data-driven generative framework for synthe-
sizing blood vessel 3D geometry. This is a challenging task due to the
complexity of vascular systems, which are highly variating in shape, size,
and structure. Existing model-based methods provide some degree of
control and variation in the structures produced, but fail to capture the
diversity of actual anatomical data. We developed VesselVAE, a recursive
variational Neural Network that fully exploits the hierarchical organiza-
tion of the vessel and learns a low-dimensional manifold encoding branch
connectivity along with geometry features describing the target surface.
After training, the VesselVAE latent space can be sampled to generate
new vessel geometries. To the best of our knowledge, this work is the
first to utilize this technique for synthesizing blood vessels. We achieve
similarities of synthetic and real data for radius (.97), length (.95), and
tortuosity (.96). By leveraging the power of deep neural networks, we
generate 3D models of blood vessels that are both accurate and diverse,
which is crucial for medical and surgical training, hemodynamic simula-
tions, and many other purposes.

Keywords: Vascular 3D model · Generative modeling · Neural Net-
works .

1 Introduction

Accurate 3D models of blood vessels are increasingly required for several pur-
poses in Medicine and Science [25]. These meshes are typically generated using
either image segmentation or synthetic methods. Despite significant advances in
vessel segmentation [26], reconstructing thin features accurately from medical
images remains challenging [2]. Manual editing of vessel geometry is a tedious
and error prone task that requires expert medical knowledge, which explains the
scarcity of curated datasets. As a result, several methods have been developed
to adequately synthesize blood vessel geometry [29].

Within the existing literature on generating vascular 3D models, we identi-
fied two primary types of algorithms: fractal-based, and space-filling algorithms.
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Fractal-based algorithms use a set of fixed rules that include different branching
parameters, such as the ratio of asymmetry in arterial bifurcations and the re-
lationship between the diameter of the vessel and the flow [7, 33]. On the other
hand, space-filling algorithms allow the blood vessels to grow into a specific
perfusion volume while aligning with hemodynamic laws and constraints on the
formation of blood vessels [9, 25, 22, 17, 21]. Although these model-based methods
provide some degree of control and variation in the structures produced, they
often fail to capture the diversity of real anatomical data.

In recent years, deep neural networks led to the development of powerful gen-
erative models [30], such as Generative Adversarial Networks [8, 12] and Diffusion
Models [11], which produced groundbreaking performance in many applications,
ranging from image and video synthesis to molecular design. These advances have
inspired the creation of novel network architectures to model 3D shapes using
voxel representations [28], point clouds [31], signed distance functions [19], and
polygonal meshes [18]. In particular, and close to our aim, Wolterink et al. [27]
propose a GAN model capable of generating coronary artery anatomies. How-
ever, this model is limited to generating single-channel blood vessels and thus
does not support the generation of more complex, tree-like vessel topologies.

In this work we propose a novel data-driven framework named VesselVAE
for synthesizing blood vessel geometry. Our generative framework is based on
a Recursive variational Neural Network (RvNN), that has been applied in vari-
ous contexts, including natural language [24, 23], shape semantics modeling [14,
15], and document layout generation [20]. In contrast to previous data-driven
methods, our recursive network fully exploits the hierarchical organization of
the vessel and learns a low-dimensional manifold encoding branch connectivity
along with geometry features describing the target surface. Once trained, the
VesselVAE latent space is sampled to generate new vessel geometries. To the
best of our knowledge, this work is the first to synthesize multi-branch blood
vessel trees by learning from real data. Experiments show that synth and real
blood vessel geometries are highly similar measured with the cosine similarity:
radius (.97), length (.95), and tortuosity (.96).

2 Methods

Input. The network input is a binary tree representation of the blood vessel
3D geometry. Formally, each tree is defined as a tuple (T, E), where T is the set
of nodes, and E is the set of directed edges connecting a pair of nodes (n,m),
with n,m ∈ T . In order to encode a 3D model into this representation, vessel
segments V are parameterized by a central axis consisting of ordered points in
Euclidean space: V = v1, v2, . . . , vN and a radius r, assuming a piece-wise tubu-
lar vessel for simplicity. We then construct the binary tree as a set of nodes
T = n1, n2, . . . , nN , where each node ni represents a vessel segment v and con-
tains an attribute vector xi = [xi, yi, zi, ri] ∈ R4 with the coordinates of the
corresponding point and its radius ri. See Section 3 for details.
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Fig. 1. Top: Overview of the Recursive variational Neural Network for synthesizing
blood vessel structures. The architecture follows an Encoder-Decoder framework which
can handle the hierarchical tree representation of the vessels. VesselVAE learns to
generate the topology and attributes for each node in the tree, which is then used to
synthesize 3D meshes. Bottom: Layers of the Encoder and Decoder networks comprising
branches of fully-connected layers followed by leaky ReLU activations. Note that the
right/left Enc-MLPs within the Encoder are triggered respectively when the incoming
node in the tree is identified as a right or left child. Similarly, the Decoder only uses
right/left Dec-MLPs when the Node Classifier predicts bifurcations.

Network architecture. The proposed generative model is a Recursive vari-
ational Neural Network (RvNN) consisting of two main components: the Encoder
(Enc) and the Decoder (Dec) networks. The Encoder transforms a tree struc-
ture into a hierarchical encoding on the learned manifold. The Decoder network
is capable of sampling from this encoded space to decode tree structures, as
depicted in Fig. 1. The encoding and decoding processes are achieved through
a depth-first traversal of the tree, where each node is combined with its parent
node recursively. The model outputs a hierarchy of vessel branches, where each
internal node in the hierarchy is represented by a vector that encodes its own
attributes and the information of all subsequent nodes in the tree.

Within the RvNN Decoder network there are two essential components: the
Node Classifier (Cls) and the Features Decoder Multi-Layer Perceptron (Fea-
tures Dec-MLP). The Node Classifier discerns the type of node to be decoded,
whether it is a leaf node or an internal node with one or two bifurcations. This
is implemented as a multi-layer perceptron trained to predict a three-category
bifurcation probability based on the encoded vector as input. Complementing
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the Node Classifier, the Features Dec-MLP is responsible for reconstructing the
attributes of each node, specifically its coordinates and radius. Furthermore, two
additional components, the Right and Left Dec-MLP, are in charge of recursively
decoding the next encoded node in the tree hierarchy. These decoder’s branches
execute based on the classifier prediction for that encoded node. If the Node
Classifier predicts a single child for a node, a right child is assumed by default.

In addition to the core architecture, our model is further augmented with
three auxiliary, shallow, fully-connected neural networks: fµ, fσ, and gz. Posi-
tioned before the RvNN bottleneck, the fµ and fσ networks shape the distri-
bution of the latent space where encoded tree structures lie. Conversely, the
gz network, situated after the bottleneck, facilitates the decoding of latent vari-
ables, aiding the Decoder network in the reconstruction of tree structures. Collec-
tively, these supplementary networks streamline the data transformation process
through the model. All activation functions used in our networks are leaky Re-
LUs. See the Appendix for implementation details.

Objective. Our generative model is trained to learn a probability distribu-
tion over the latent space that can be used to generate new blood vessel segments.
After encoding, the decoder takes samples from a multivariate Gaussian distri-
bution: zs(x) ∼ N(µ, σ) with µ = fµ(Enc(x)) and σ = fσ(Enc(x)), where Enc
is the recursive encoder and fµ, fσ are two fully-connected neural networks. In
order to recover the feature vectors x for each node along with the tree topology,
we simultaneously train the regression network (Features Dec-MLP in Fig. 1) on
a reconstruction objective Lrecon, and the Node Classifier using Ltopo. Addition-
ally, in line with the general framework proposed by β-VAE [10], we incorporated
a Kullback-Leibler (KL) divergence term encouraging the distribution p(zs(x))
over all training samples x to move closer to the prior of the standard normal
distribution p(z). We therefore minimize the following equation:

L = Lrecon + αLtopo + γLKL, (1)

where the reconstruction loss is defined as Lrecon = ∥Dec (zs(x))− x∥2, the
Kullback-Leibler divergence loss is LKL = DKL (p (zs(x)) ∥p(z)), and the topol-
ogy objective is a three-class cross entropy loss Ltopo = Σ3

c=1xc log(Cls(Dec(x))c).
Notice that xc is a binary indicator (0 or 1) for the true class of the sample x.
Specifically, xc = 1 if the sample belongs to class c and 0 otherwise. Cls(Dec(x))c
is the predicted probability of the sample x belonging to class c (zero, one, or
two bifurcations), as output by the classifier. Here, Dec(x) denotes the encoded-
decoded node representation of the input sample x.

3D mesh synthesis. Several algorithms have been proposed in the litera-
ture to generate a surface 3D mesh from a tree-structured centerline [29]. For
simplicity and efficiency, we chose the approach described in [6], which produces
good quality meshes from centerlines with a low sample rate. The implemented
method iterates through the points in the curve generating a coarse quadrilateral
mesh along the segments and joints. The centerline sampling step is crucial for a
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Cross-section Extraction
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Fig. 2. Dataset and pre-processing overview: The raw meshes from the IntraA 3D col-
lection undergo pre-processing using the VMTK toolkit. This step is crucial for extract-
ing centerlines and cross-sections from the meshes, which are then used to construct
their binary tree representations.

successful reconstruction outcome. Thus, our re-sampling is not equispaced but
rather changes with curvature and radius along the centerline, increasing the
frequency of sampling near high-curvature regions. This results in a better qual-
ity and more accurate mesh. Finally, Catmull-Clark subdivision algorithm [5] is
used to increase mesh resolution and smooth out the surface.

3 Experimental Setup

Materials. We trained our networks using a subset of the open-access IntrA
dataset 4 published by Yang et al. in 2020 [32]. This subset consisted of 1694
healthy vessel segments reconstructed from 2D MRA images of patients. We
converted 3D meshes into a binary tree representation and used the network ex-
traction script from the VMTK toolkit 5 to extract the centerline coordinates of
each vessel model. The centerline points were determined based on the ratio be-
tween the sphere step and the local maximum radius, which was computed using
the advancement ratio specified by the user. The radius of the blood vessel con-
duit at each centerline sample was determined using the computed cross-sections
assuming a maximal circular shape (See Figure 2). To improve computational
efficiency during recursive tree traversal, we implemented an algorithm that bal-
ances each tree by identifying a new root. We additionally trimmed trees to
a depth of ten in our experiments. This decision reflects a balance between the
computational demands of depth-first tree traversal in each training step and the
complexity of the training meshes. We excluded from our study trees that exhib-
ited greater depth, nodes with more than two children, or with loops. However,

4 https://github.com/intra3d2019/IntrA
5 http://www.vmtk.org/vmtkscripts/vmtknetworkextraction
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non-binary trees can be converted into binary trees and it is possible to train
with deeper trees at the expense of higher computational costs. Ultimately, we
were able to obtain 700 binary trees from the original meshes using this approach.

Implementation details. For the centerline extraction, we set the advance-
ment ratio in the VMTK script to 1.05. The script can sometimes produce mul-
tiple cross-sections at centerline bifurcations. In those cases, we selected the
sample with the lowest radius, which ensures proper alignment with the center-
line principal direction. All attributes were normalized to a range of [0, 1]. For
the mesh reconstruction we used 4 iterations of Catmull-Clark subdivision algo-
rithm. The data pre-processing pipeline and network code were implemented in
Python and PyTorch Framework.

Training. In all stages, we set the batch size to 10 and used the ADAM
optimizer with β1 = 0.9, β2 = 0.999, and a learning rate of 1 × 10−4. We set
α = .3 and γ = .001 for Equation 1 in our experiments. To enhance computation
speed, we implemented dynamic batching [16], which groups together operations
involving input trees of dissimilar shapes and different nodes within a single in-
put graph. It takes approximately 12 hours to train our models on a workstation
equipped with an NVIDIA A100 GPU, 80GB VRAM, and 256GB RAM. How-
ever, the memory footprint during training is very small (≤1GB) due to the
use of a lightweight tree representation. This means that the amount of mem-
ory required to store and manipulate our training data structures is minimal.
During training, we ensure that the reconstructed tree aligns with the original
structure, rather than relying solely on the classifier’s predictions. We train the
classifier using a cross-entropy loss that compares its predictions to the actual
values from the original tree. Since the number of nodes in each class is unbal-
anced, we scale the weight given to each class in the cross-entropy loss using the
inverse of each class count. During preliminary experiments, we observed that
accurately classifying nodes closer to the tree root is critical. This is because a
miss-classification of top nodes has a cascading effect on all subsequent nodes in
the tree (i.e. skip reconstructing a branch). To account for this, we introduce a
weighting scheme that for each node, assigns a weight to the cross-entropy loss
based on the number of total child nodes. The weight is normalized by the total
number of nodes in the tree.

Metrics. We defined a set of metrics to evaluate our trained network’s per-
formance. By using these metrics, we can determine how well the generated 3D
models of blood vessels match the original dataset distribution, as well as the
diversity of the generated output. The chosen metrics have been widely used in
the field of blood vessel 3D modeling, and have shown to provide reliable and
accurate quantification of blood vessels main characteristics [3, 13]. We analyzed
tortuosity per branch, the vessel centerline total length, and the average radius
of the tree. Tortuosity distance metric [4] is a widely used metric in the field
of blood vessel analysis, mainly because of its clinical importance. It measures
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Fig. 3. (a) shows the histograms of total length, average radius and tortuosity per
branch for both, real and synthetic samples. (b) shows a visual comparison among our
method and two baselines [27, 9].

the amount of twistiness in each branch of the vessel. Vessel’s total length and
average radius were used in previous work to distinguish healthy vasculature
from cancerous malformations. Finally, in order to measure the distance across
distributions for each metric, we compute the cosine similarity.

4 Results

We conducted both quantitative and qualitative analyses to evaluate the model’s
performance. For the quantitative analyses, we implemented a set of metrics
commonly used for characterizing blood vessels. We computed histograms of the
radius, total length, and tortuosity for the real blood vessel set and the generated
set (700 samples) in Figure 3 (a). The distributions are aligned and consistent.
We measured the closeness of histograms with the cosine similarity by projecting
the distribution into a vector of n-dimensional space (n is the number of bins in
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the histogram). Since our points are positive, the results range from 0 to 1. We
obtain a radius cosine similarity of .97, a total length cosine similarity of .95,
and a tortuosity cosine similarity of .96. Results show high similarities between
histograms demonstrating that generated blood vessels are realistic. Given the
differences with the baselines generated topologies, for a fair comparison, we
limited our evaluation to a visual inspection of the meshes.

The qualitative analyses consisted of a visual evaluation of the reconstructed
outputs provided by the decoder network. We visually compared them to state-
of-the-art methods in Figure 3 (b). The method described by Wolterink and col-
leagues [27] is able to generate realistic blood vessels but without branches, and
the method described by Hamarneh et al. [9] is capable of generating branches
with straight shapes, missing on realistic modeling. In contrast, our method is
capable of generating realistic blood vessels containing branches, with smooth
varying radius, lengths, and tortuosity.

5 Conclusions

We have presented a novel approach for synthesizing blood vessel models using a
variational recursive autoencoder. Our method enables efficient encoding and de-
coding of binary tree structures, and produces high-quality synthesized models.
In the future, we aim to explore combinations of our approach with representing
surfaces by the zero level set in a differentiable implicit neural representation
(INR) [1]. This could lead to more accurate and efficient modeling of blood ves-
sels and potentially other non-tree-like structures such as capillary networks.
Since the presented framework would require significant adaptations to accom-
modate such complex topologies, exploring this problem would certainly be an
interesting direction for future research. Additionally, the generated geometries
might show self-intersections. In the future, we would like to incorporate restric-
tions into the generative model to avoid such artifacts. Overall, we believe that
our proposed approach holds great promise for advancing 3D blood vessel ge-
ometry synthesis and contributing to the development of new clinical tools for
healthcare professionals.
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