
PQEMw, Applying Weighted Sums to Software
Quality Measurement

Mariana Falco1 and Gabriela Robiolo2

1 LIDTUA/CONICET, Facultad de Ingenieŕıa, Universidad Austral
Pilar, Buenos Aires, Argentina

mfalco@austral.edu.ar
2 LIDTUA, Facultad de Ingenieŕıa, Universidad Austral

Pilar, Buenos Aires, Argentina
grobiolo@austral.edu.ar

Abstract. Product owners and quality leaders need to understand the
quality level of a software product through its life cycle in order to achieve
appropriate decision making to remain in the same iteration or to con-
tinue to the next one. Product Quality Evaluation Method (PQEM)
evaluates and monitors the quality of a software product within each
iteration. The present article introduces the extension of the method,
PQEMwi to include the definition and calculation of weights for each
quality characteristic measured. PQEMwi allows the stakeholder to set
their point of view and importance of each quality characteristic, and we
carried out an illustrative example of two apps, comparing the decision-
making of the weights selection and the results of applying PQEMwi.

Keywords: Quality measurement · Weighted sums · Software product.

1 Introduction

In Software Engineering, software evolves over time but there must be a balance
between new developments and factors that worsen progress [1]. The changing
and dynamic environments activated a scheme where the requirements associated
with the release of software products are affected by a high demand from the
stakeholders, to achieve quality products with short delivery times.

Although around the late seventies, the laws of software evolution were not
widely accepted within the field, but they gradually became more important as
they were able to provide inputs to understand the software process. Today, these
eight laws are supported by the FEAST (Feedback, Evolution And Software
Technology) hypothesis [2], which leads to point out the need to understand
the bases of these laws to apply these concepts in the current field of software
development.

A field in which the measurement plays a fundamental role in the develop-
ment of efficient and effective software, where the adverse impact of low-level
quality is way more significant in a dynamic era [3]. As a part of the software life
cycle process, quality plays a vital role and after each iteration, it is necessary to

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 103



2 Falco Robiolo

study the quality level achieved on that iteration before proceeding to the next
one [4].

Even though there are some manual and automatic ways of analysing quality
like SonarQube3, there are no fully equipped tools to measure a set of quality
characteristics. Based on these challenges, the authors have defined Product
Quality Evaluation Method (PQEM) [5–7], which is a five-step method per it-
eration, whose main goal is to perform a thoughtful quality assessment of the
different iterations within a software product, and that produces a single value
between 0 and 1 as the final outcome that represents the product quality level,
which is called Total Obtained Coverage (TOCi).

PQEM is structured around the Representational Theory of Measurement
[14], the Goal-Question-Metric approach [8], the set of quality characteristics
defined by the standard ISO/IEC 25010 [18], the set of measures defined by
the standard ISO/IEC 25023 [19], the extension of notion of coverage testing
as a percentage scale concept to achieve the measurement, and the definition of
acceptance criteria related to the expected quality level per each iteration.

Based on previous applications of PQEM, we discovered that the stakeholders
might need to define a weighing of each quality attribute on the software product
under analysis, as a way to specify the importance of each attribute in the
domain. As such, the goal of the present article is to introduce the extension of
PQEM, called PQEMw with the addition of weighting up each quality attribute
trough the selection of a weight that is included as a part of an equation to obtain
a quality value called TOCwi. In other words, the addition of weights lets the
stakeholder to specify their point of view based on the domain impact of each
quality attribute.

This article is structured as follows: in Section 2, the related work will be
addressed, while Section 3 will describe and characterize each of the steps within
the Product Quality Evaluation Method (PQEM) as well as the extension of
PQEM. Section 4 will include the characteristics and results of an illustrative
example. Section 5 will describe the discussion, while Section 6 will portray the
conclusions as well as the future work.

2 Related work

Weighted sums are used to quantify a number of software attributes, allowing
to use a weighted sum to combine several, lower-level measures to build a single,
upper-level measure that may quantify different aspects of a given attribute
at the same time or even a single aspect of an attribute, based on a number
of measures for it [25]. In this line, Hovorushchenko developed a method for
evaluating the weights of software quality measures and indicators [10], based on
ISO/IEC 25010:2011 set of quality characteristics, and they concluded that there
are measures that there is a correlation of sub-characteristics and characteristics
with measures.

3 SonarQube, https://www.sonarqube.org/

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 104



PQEMw, Applying Weighted Sums to Software Quality Measurement 3

The development of software applications involves concepts such as estimated
quality level (used when the app is not yet available), planned quality level (ob-
tained by studying the quality of same class software apps available on the
market), and actual level of quality (must be set to ensure reaching the app’s
goals). In this line, the authors in [11] constructed an indicator for each evalua-
tion criteria that chooses quality products, and two aggregated indicators which
includes all quality characteristics, one is the aggregation using the sum oper-
ator while the other is the aggregation using the product operator. Their main
variables are the following: the number of characteristics, the quality level and
the weight associated to a characteristic.

Later on, two early models described quality using decomposition approach,
one is from McCall [12] and the other from Boehm and others [13]. These mod-
els focus on the final product and identify key attributes of quality from user’s
perspective - called quality factors, which are normally high-level external at-
tributes like reliability, usability, and maintainability; and they assume that the
quality factors are still at too high a level to be measurable directly, and so they
are further decomposed into quality subfactors [14]. Also, there are examples of
fixed quality models.

These authors defined software quality in terms of external software at-
tributes, regarding sub-attributes. Even though the use of weighted sums may
not be mandatory in all of these quality models, they have been used to ag-
gregate the measures associated with a sub-attribute to obtain a single value
to measure the sub-attribute. Finally, a measure for the overall quality may be
obtained as a weighted sum of the measures obtained for the attributes [15].

Likewise, PQEM method includes aggregated sums as a way to measure
each quality characteristic which are composed by a subset of Quality Attribute
Requirements (QARs), which lead to obtain a single measure per quality charac-
teristic [6, 7]. Also, a measure for the overall quality is obtained as an aggregated
sum of the measures obtained per each quality characteristic.

Literature shows approaches that address the measurement of different as-
pects within the life cycle of a software product. For example, a set of measures
were defined to quantify the size of a product at the beginning of development
based on the set of functional requirements, and are called Functional Size Mea-
surement (FSM) methods. Function Points Analysis (FPA) is the first proposal
for FSM, it provides a measure of the size in function points, and requires a
manual analysis of informal documents such as software requirements and sizing
of an application before it is developed.

In the process of identifying and weighting Basic Functional Components
(BFC), the FP measurement is based on the measure of BFC and the subse-
quent weighting and aggregation of BFC measures [16]. Some studies have used
weighted sums as ways of quantifying quality attributes, and so PQEM includes
this idea of weighted sum as a way to combine measures which are part of each
quality attributes analyzed on an iteration.

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 105



4 Falco Robiolo

3 PQEM

PQEM [5] is a five-step method per iteration, whose main goal is to analyze,
study, measure and assess the quality level of the different iterations within
a software product. It produces a single value between 0 and 1 as the final
outcome that represents the product quality level, basically the degree to which
the software product fulfills its quality attribute requirements [17].

This method is structured around the quality model provided by the standard
ISO/IEC 25010:2011 [18], which provides a basis to analyze a software product
with respect to the following set of quality characteristics: Functional Suitability,
Performance Efficiency, Compatibility, Usability, Reliability, Security, Maintain-
ability, and Portability; and around the standard ISO/IEC 25023:2016 [19] that
defines quality measures for quantitatively evaluating system and software prod-
uct quality in terms of the previous characteristics. The five steps are described
below.

– Step 1: Product Setup - definition of the amount of expected iterations of the
software product, and the definition of expected quality level per iteration

– Step 2: Elicitation of Quality Attributes Requirements (QARs) - composed
by the selection of quality characteristics, the specification of Quality At-
tribute Requirements (QARs), the elicitation of metrics, and the definition
of acceptance criteria per QAR.

– Step 3: Measure and Test each Quality Attribute Requirements (QARs) -
that involves measuring each question, running the defined quality measure,
and describing whether or not the acceptance criteria were met (1 equals
passed, 0 equals failed).

– Step 4: Collect and Synthesize Results - includes the implementation of the
extension of the testing coverage [20] as a quality coverage

– Step 5: Product Quality Level Assessment - analyze the obtained quality
level, and make a decision to move forward to the next iteration or not

It is worth mentioning that the steps described above are repeated for each
iteration within the product life cycle. Also, each step can be done manually,
while the measurement itself can be done through the aid of software in order to
reach the coverage calculations and the quality level. This characteristic makes
the method suitable to be applied in any software development method that
defines iterations. When evaluating the progress of a project or a product, it
addresses the logic of iterative methods, and when it comes to quality evolution,
the product of each iteration is a new usable version of the product.

With the set of defined equations to compute the quality level, it is possible
to obtain the quality level of each iteration from a software product. The fol-
lowing subsection describes the incorporation of weights to the PQEM method,
to obtain an improved version of the equations, by letting the stakeholder to
specify a set of weights to identify the priority of each quality characteristic over
the others.

Furthermore, a newer logic was also added to PQEM that will allow the
stakeholder to specify whether an attribute within the iteration is mandatory or

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 106



PQEMw, Applying Weighted Sums to Software Quality Measurement 5

not. That is, when you define the list of quality attributes you can specify that
a subset of them be mandatory, in other words: those QARs must have reached
the expected coverage level for the iteration, if they do not reach it, the iteration
cannot advance. So the acceptance criteria to be defined not only includes the
acceptance criteria per quality attribute, but also whether it is mandatory or
not.

3.1 PQEMw: PQEM with weights

With the previous definition of PQEM, all quality attributes are considered
evenly, because the attributes have the same significance for the stakeholder.
But the different domains lead to differences in valuation, and that some quality
attributes are positioned over others. For example, in the medical field, Interop-
erability and Security are set to be priority over others, but that does not mean
that the others are not important nor necessary, it only establishes an idea of
hierarchy in a higher valuation for an attribute with respect to the other [21–24].

Based on the above ideas, it was thought to define a set of weights to in-
clude within the PQEM method, to reach those different level of significance,
according to the requirements of the domain in which the software product is
embedded. The original definition of the quality level (TOCi) implied the sum
of the coverage reached by each quality attribute, where the range of values that
it can take is between 0 and 1, so the closer to 1 is the TOCi level, the better
the quality value of that iteration. The acceptance criteria is a number that can
take values between 0 and 1, with a tendency to present values greater than 0.5;
while they are defined by the stakeholder. The added Equations are shown as
follows:

OCwqi = OvCqi ∗Wqi (1)

TOCwi =

∑n
q=1 OCwqi∑n

q=1 OCwqimax
(2)

where:

– q identifies each quality characteristic

– i identifies each iteration

– n is the number of quality characteristics defined

– OCwi is the obtained coverage with weights per quality characteristic within
the iteration

– OvCqi is the overall coverage per quality characteristic per iteration

– Wqi is the weight per quality characteristic for each iteration which is an
integer

– TOCwi is the total obtained coverage of QARs per iteration

–
∑n

q=1 OCwqimax is the maximum possible value for the sum of coverage
with weights when all the QARs passed within the iteration

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 107



6 Falco Robiolo

To include these weights, the mathematical basis presented by S. Morasca
[15] was used, who describes the use of weighted sums in the process of defining
measures in Software Engineering. The author considers a given set of n real
valued weights (x1, ..., xn) and of n real valued weights (w1, ..., wn), and define
weighted sum ws as the sum of i from 1..n of wi ∗wi. For the case in which the
sum of wi is equal to 1, the weighted sums are said to be normalized.

Later on, once the coverage by quality characteristic and the quality value
of the iteration have been calculated, the weight is now included, which will be
multiplied by each coverage obtained, which will allow get a new quality value
TOCwi.

Traditionally, the most frequent way of defining weights is with coefficients,
whose sum gives 1. In this case, it was not considered convenient to apply in
PQEMw because, if a weight between 0 and 1 is taken, the multiplication between
the obtained coverage for the quality characteristic and the defined weight, may
result in a lower decimal value than the one originally obtained when calculating
said coverage. This event may cause the stakeholder to misinterpret the chosen
weight.

If, for example, the coverage value obtained for a quality characteristic was
0.23 and the weight is 0.11, the coverage result is 0.025, which is a number less
than 0.23. These resulting values might confuse the stakeholder, when comparing
quality results, thinking that the quality has dropped (by a decreasing value)
when in reality that may not be the conclusion.

Taking this as a basis, we now propose a weight associated with each quality
characteristic that can take an integer value in a range defined by the stakeholder
(for example: 1 to 5), always considering positive integer values. This value
represents the highest level that can be considered when carrying out the quality
analysis, and that will establish the range of possible values that the Wqi can
take.

Following the idea that this weight can only take positive integer values, and
considering the logic proposed by R. Likert in his method with evaluation scales
with respect to a set of elements (which in our case would be the weights to
choose from for each quality attribute), we are considering a range between 0
and n for the weights, where n is a positive integer value.

Even though, the stakeholder does not specify his level of agreement or dis-
agreement with respect to a symmetric of statements, Likert’s methodology
works as a basis to analyze the idea of choosing a viable value of this posi-
tive integer that allows later to understand the level of quality achieved, based
on the characterization of the domain in which the product to be analyzed is
embedded.

It is important to understand that
∑n

q=1 OvCwqimax allows to calculate the
maximum value of coverage of the iteration, in an ideal condition; that is the one
in which all quality attribute requirements (QARs) of each quality characteristic
passed successfully. This result allows to simplify the TOCwi value, allowing the
stakeholder to have a similar value comparable to the previously TOCi obtained.

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 108



PQEMw, Applying Weighted Sums to Software Quality Measurement 7

That it is a whole number helps to make the analysis of the results uniform and
understandable for the decision maker.

In the same way, the denominator in Equation (2) is greater than the de-
nominator, and therefore, it will always be a number between 0 and 1. In the
case that the numerator is 0, it implies a situation in which none of the QARs
were successful. If the numerator is 1, then it is the ideal situation where all
the QARs passed. These two extreme values lead to the justification that the
possible range of values is between 0 and 1.

4 Illustrative example

The main goal of this section is to study the application of PQEMw to the quality
analysis of two scenarios, in order to obtain the feasibility and viability of using
weights as well as understanding how the weighting on each quality coverage
obtained through PQEM impacts on the quality value. As such, we schematized
the methodology for each scenario as follows: (1) applied the steps of PQEM to
the scenario (scenario 1 will have the full procedure description), (2) obtain the
quality level for the iteration, (3) define the set of weights based on the domain
and the stakeholder’s needs, (4) calculate an ideal run where all QARs passed,
(5) obtain the results for the run with the obtained coverage values and their
coverage weights, and (6) extract conclusions from comparisons.

4.1 Scenario 1: app within the healthcare field

In this case, we will consider the third iteration of an application embedded in the
medical field, which ensures that the physical recovery of cardiac patients who
are part of a cardiac rehabilitation program can take place in an environment
outside hospitals. The application has a client-server architecture, with a web
and mobile app, where the mobile version is used by the patients to monitor
their heart rate and to keep track of their exercises, and the web version is used
by the doctors to ensure a proper monitoring of each of their patients.

As shown in Table 1, the third iteration of the app were measured around 10
quality characteristics and 293 QARs, the quality value obtained was TOC3 =
0.90, and so it passed the expected quality level for the iteration, which was de-
fined at 0.80. Based on that the two previous iterations achieved a proper quality
level, it is feasible to conclude the succession of iterations of the application, and
it is not necessary to rerun the measurement. With respect to the selection of
weights, and to carry out the coverage calculations, the value of weights will
vary between 1 and 5, in order to obtain the TOCw3 value, which will provide
the quality value of the iteration with the weights.

Ideal run with PQEMw A run was made with the application of PQEMw,
considering that the coverage of each quality characteristic was reached by 100%,
meaning that all the QARs for each quality characteristics managed to pass the
acceptance criteria. The latter is the ideal state for an iteration, where every

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 109



8 Falco Robiolo

single one of the QARs were present in the application. Table 1 shows the ideal
situation where all quality attributes requirements are present within the appli-
cation under study, and also we already included a selection of weights between
1 and 5, to analyze this case based on the stakeholders ideas and domain char-
acteristics.

Table 1. Scenario 1: Ideal run when all QARs passed.

QC NQARq3 NpQARq3 OCq3 W OvCq3

Availability 14 14 0.05 5 0.23
Fault-tolerance 4 4 0.01 4 0.05
Recoverability 7 7 0.02 3 0.07
Functional suitability 57 57 0.19 2 0.38
Interoperability 22 22 0.08 5 0.37
Modifiability 67 67 0.23 3 0.68
Performance efficiency 17 17 0.06 4 0.23
Security 30 30 0.10 5 0.51
Usability 64 64 0.22 3 0.65
Portability 11 11 0.04 2 0.07

Total 293 293 TOC3 = 0.90 - 3.29/3.29=1

The total coverage value obtained in that ideal condition was 3.29, and
it represents the highest possible value that can be computed when all the
QARs passed and for that set of defined weights. Consequently, when computing
3.29/3.29, the resulting value is TOCw3max = 1.

Regular run with PQEMw Based on this maximum value reached, we can
now calculate and analyze the results of the application of PQEMw to the set of
quality characteristics with the real coverage values obtained with the inclusion
of the weights previously used. Table 2 describes this regular run with the same
set of weights as Table 1.

Starting from the previous data, the TOCw3 value results in 0.88, which
is calculated as the quotient between the total obtained coverage (2.92 - see
Table 1) and the maximum value for the iteration (3.29 - see Table 2). In this
case, the value obtained (0.88) is a value close to the maximum possible value
on the scale and compared to the previous value of TOC3 = 0.90, it can be
said that there is similarity between them and therefore, the previously selected
weights that multiply said individual coverages do not affect the resulting value
and it is possible to understand said values in terms of quality.

Regular run with PQEMw - different set of weights TO properly under-
stand, how the weighting on each quality coverage obtained through PQEMw
impacts on the quality level value (TOC3 and TOCw3), we changed the set of

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 110



PQEMw, Applying Weighted Sums to Software Quality Measurement 9

Table 2. Scenario 1: PQEMw results for the regular run.

QC NQARq3 NpQARq3 OCq3 W OvCq3

Availability 14 14 0.05 5 0.24
Fault-tolerance 4 4 0.01 4 0.05
Recoverability 7 6 0.02 3 0.06
Functional suitability 57 50 0.19 2 0.34
Interoperability 22 12 0.08 5 0.20
Modifiability 67 60 0.23 3 0.61
Performance efficiency 17 16 0.06 4 0.22
Security 30 27 0.10 5 0.46
Usability 64 64 0.22 3 0.66
Portability 11 11 0.04 2 0.08

Total QARs=293 Passed QARs=264 TOC3 = 0.90 - 2.92/3.29=0.88

weights to let them take some value between 5 and 10, and re run the full proce-
dure of coverage. The total coverage value obtained in that ideal condition was
7.85, and so, we calculated later the TOCw as shown in Table 3.

Table 3. Scenario 1: PQEMw results for the regular run with a different set of weights.

QC NQARq3 NpQARq3 OCq3 W OvCq3

Availability 14 14 0.05 10 0.47
Fault-tolerance 4 4 0.01 9 0.12
Recoverability 7 6 0.02 8 0.16
Functional suitability 57 50 0.19 7 1.195
Interoperability 22 12 0.08 9 0.36
Modifiability 67 60 0.23 7 1.43
Performance efficiency 17 16 0.06 8 0.43
Security 30 27 0.10 10 0.92
Usability 64 64 0.22 8 1.74
Portability 11 11 0.04 5 0.18

Total QARs=293 Passed QARs=264 TOC3 = 0.90 - 7.05/7.85=0.89

By changing the weights, we tried to understand what happened with the
coverage values. In this context, even though the coverage values are higher
than the idea of a quality level between 0 and 1, the Equations defined allows
a certain normalization of these values, letting the stakeholder or manager to
easily understand the result. By comparing the final value, TOC3 = 0.90 and
TOCw3 = 0.89, we obtained a similar value between those quality values, and
so, the weights can increase the general coverage value, but the final quality level
can become a number between 0 and 1, providing the same idea of ”how well
performed the iteration”.

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 111



10 Falco Robiolo

4.2 Scenario 2: e-commerce web app

In this case, we measured an e-commerce web app were the most critical qualities
are those that impact the end user as well as the ones that should be considered
for the company powering the e-commerce website, considering ten quality char-
acteristics and 343 QARs. As such, the stakeholders schematized the priorities
for the quality characteristics as the ones with the higher values of weights as
shown in Tables 4 and 5.

Table 4. Scenario 2: Ideal run when all QARs passed.

QC NQARq3 NpQARq1 OvCq1 W OvCq1

Availability 19 19 0.055 5 0.277
Fault-Tolerance 12 12 0.035 4 0.140
Recoverability 30 30 0.087 2 0.175
Functional Suitability 45 45 0.131 3 0.394
Modifiability 35 35 0.102 3 0.306
Performance Efficiency 48 48 0.140 5 0.700
Testability 26 26 0.076 3 0.227
Security 41 41 0.120 5 0.598
Usability 64 64 0.187 5 0.933
Maintainability 23 23 0.067 5 0.18

Total 343 343 1 - 4.08/4.08=1

From the ideal run, we obtained OvCwq1 = 4.08, we reached to a TOCw1 =
0.705 quality level with weights. The quality level for this iteration is TOC1 =
0.708, which is also similar to the TOCw1 = 0.705.

Table 5. Scenario 2: PQEMw results for the regular run.

QC NQARq3 NpQARq1 OvCq1 W OvCq1

Availability 19 14 0.041 5 0.23
Fault-Tolerance 12 10 0.029 4 0.12
Recoverability 30 24 0.07 2 0.16
Functional Suitability 45 30 0.087 3 0.30
Modifiability 35 27 0.079 3 0.23
Performance Efficiency 48 21 0.061 5 0.35
Testability 26 15 0.044 3 0.15
Security 41 34 0.099 5 0.58
Usability 64 57 0.166 5 0.97
Maintainability 23 11 0.032 5 0.18

Total 343 238 TOC1 = 0.708 - 2.88/4.08=0.705

With the incorporation of weights to the method, one of the key ideas that
are to be considered is the value to assign to each weight, and, regarding the

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 112



PQEMw, Applying Weighted Sums to Software Quality Measurement 11

strategies developed by [15], we worked on an integration of measurer-defined
weights and default weights; because in the first one the weights are chosen based
on the goals of the application to which their quality level, and considering its
domain, since the latter impacts what is the weighting and the mandatory quality
characteristics; while the third strategy is the case when all the weights are 1,
effectively considering that all the quality characteristics weigh the same.

Likewise, these weights should be representative of what the stakeholder con-
sider as a priority with respect to the software product. As such, the highest
values of chosen weights shows the importance described by the stakeholders
with respect to each quality characteristic.

5 Discussion

Weighted sums continue to be used in software engineering as a means of quan-
tifying a set of software attributes. The idea is to use a weighted sum to combine
several lower-level measures to build a single higher-level measure, which quan-
tifies different aspects of an attribute at the same time, and which you can use
for both internal and external software attributes [14, 15].

The literature reports studies in which weighted sums have been used to
specify unique numbers that allow evaluating a functionality, quality in general
or other attributes, in order to understand which of them has a greater degree
of functionality (or level of completeness), higher quality, among others.

In our case, we have used these weighted sums to work with quality char-
acteristics and sub characteristics based on ISO/IEC 25010:2011, in order to
obtain the quality level of a set of characteristics in each iteration of the life
cycle of a software product. With PQEM it is possible to obtain the level of
quality by means of TOCi that represents a multidimensional value, obtained
from the coverage of each quality characteristic analyzed; while TOCwi summa-
rizes the coverage multiplied by a weight defined by the stakeholder embedded
in the domain.

One of the advantages of using weighted sums in the dimensional reduction,
due to fact that they are able to transforms a n-dimensional problem into a unidi-
mensional one, where a total order can always be found. In our case, we reduce
into one number (TOCi) the coverage of each quality characteristic, and this
number allows to understand the quality performance of each iteration within
the life cycle of the product. Simplicity is another advantage, because the defined
Equations are quite simple to understand since they are only quotients between
the amount of QARs passed and total.

With the evaluation carried out as illustrative examples, we were able to es-
tablish that the use of weights in quality measurement allows defining a decision
with a higher level of complexity, together with the original decision of whether
the iteration passes or fails (based on that value TOCi obtained).

At the individual coverage level, the inclusion of weights varies the relative
value of each quality characteristic with respect to the total QARs. But this vari-
ation does not affect the value of total coverage for that iteration, which, when

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 113



12 Falco Robiolo

implementing the quotient for the coverage in the ideal situation, normalizes
that value of total coverage (meaning: the quality level) and a number similar to
the level of quality obtained is obtained. In other words: that relative variation
of coverage by the multiplication by the weights does not change the resulting
quality level.

Consequently, the fact that the inclusion of weights does not vary the final
decision (from two values that are similar to each other: TOCi and TOCwi),
confirms the idea that weights expand the capacity for decision making because
it amplifies the magnitude of the decision, based on the level of quality obtained
and the relative importance of each of the quality characteristics.

In the same way, and considering that slight variation between the resulting
quality values TOCi and TOCwi, it can be said that those quality characteristics
whose weight is 5 (or the highest possible value within the range chosen for the
set of weights) is mandatory. , which implies that for the iteration to pass, those
quality characteristics must be fulfilled in order to advance the iteration.

Also, it is true that with just only one aggregate number, it is possible to lose
information about the original measures which may be useful when making a
decision. It is true that TOCi and TOCwi summarizes the quality performance of
the application within the iteration, and that sums the coverages of each quality
characteristic, it doesn’t eliminate those original values, rather, it presents them
in a different way, so going back a step can quickly obtain those coverage values.

Likewise, usually the final result of a weighted sum is a measure that does
not have a measurement unit such as TOCi or TOCwi, although they have a
range of possible values, they do not have an associated unit of measure, but
rather those same values are represented in a trend graph of the quality level by
iteration.

Another issue is the alleged objectivity on each selected weight, which in
our case is fully dependent on the stakeholders point of view and the domain
settings, which this level of subjectivity may affect the decision making of the
project manager when he or she has to decide to move to the next iteration or
not. This subjectivity may affect on not being able to obtain a one-size-fits-all
measure that can be a fully sensible measure for an internal attribute or a useful
measure for an external attribute in all domains.

Even though weighted sums are flexible enough to be applicable in many
different cases, the excessive flexibility may be a problem when the definition
of the weights defining a measure of its own means that it is not possible to
generalize and compare measures in domains in which different versions are
defined for a measure.

6 Conclusions

The quality of a system is extremely important, and software metrics became an
essential part to understanding whether the quality of the software corresponds
to what the stakeholders needs [26]. Those needs are characterized within the
ISO/IEC 25010, as a set of quality characteristics and sub-characteristics [18].

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 114



PQEMw, Applying Weighted Sums to Software Quality Measurement 13

Based on the previous definition of the Product Quality Evaluation Method
(PQEM) [5], the present article introduced the extension of this method with the
addition of weighting up each quality attribute trough the selection of a weight
that is included within a set of equations in order to obtain a quality value called
TOCwi. In other words, the addition of weights lets the stakeholder to specify
their point of view based on the domain impact of each quality attribute.

Also, we presented two illustrative examples to demonstrate its applicability.
Knowing what to measure is a recurrent problem in a data-driven approaches,
using GQM for identifying the quality attributes ensures that the assessment
of the product is adapted to the organization applying the proposed method.
To achieve the applicability, a quality model should not only be an assessment
model but also a usable and intuitive guideline to increase quality [26].

The illustrative examples also shown the viability of setting weights values
per each quality characteristic, and the quality analysis related to each run. The
use of weights allows the stakeholder to specify their importance on the set of
quality characteristics, based on their previous experience, and specific domain.
As future work, we will conduct a validation within a business setting.

References

1. Lehman, M. M., Belady, L. A. (Eds.). (1985). Program evolution: processes of
software change. Academic Press Professional, Inc..

2. Lehman, M. M., Ramil, J. F. (2001). Rules and tools for software evolution planning
and management. Annals of software engineering, 11(1), 15-44.

3. Kan, S. H. (2003). Metrics and models in software quality engineering. Addison-
Wesley Professional.

4. Sneed, H. M., Merey, A. (1985). Automated software quality assurance. IEEE
Transactions on Software Engineering, (9), 909-916.

5. Falco, M., Robiolo, G. (2019, November). A Unique Value that Synthesizes the
Quality Level of a Product Architecture: Outcome of a Quality Attributes Re-
quirements Evaluation Method. In International Conference on Product-Focused
Software Process Improvement (pp. 649-660). Springer, Cham.

6. Falco, M., Scott, E., Robiolo, G. (2020, December). Overview of an Automated
Framework to Measure and Track the Quality Level of a Product. In 2020 IEEE
Congreso Bienal de Argentina (ARGENCON) (pp. 1-7). IEEE.

7. Falco, M., Robiolo, G. (2021, July). Product Quality Evaluation Method (PQEM):
A Comprehensive Approach for the Software Product Life Cycle. In 7th Interna-
tional Conference on Software Engineering (SOFT).

8. Basili, V. R. (1992). Software modeling and measurement: the
Goal/Question/Metric paradigm.

9. Morasca, S. (2004, September). On the definition and use of aggregate indices for
nominal, ordinal, and other scales. In 10th International Symposium on Software
Metrics, 2004. Proceedings. (pp. 46-57). IEEE.

10. Hovorushchenko, T. (2017). Method of Evaluating the Weights of Software Quality
Measures and Indicators. Application and Theory of Computer Technology, 2(2),
16-25.

11. Ivan, I., Zamfiroiu, A., Doinea, M., Despa, M. L. (2015). Assigning weights for
quality software metrics aggregation. Procedia Computer Science, 55, 586-592.

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 115



14 Falco Robiolo

12. McCall, J. A. (2002). Quality factors. encyclopedia of Software Engineering.
13. Boehm, BW and Brown, JR and Kaspar, H and Lipow, M and Macleod, GJ and

Merrit, MJ. (1978) Characteristics of Software Quality. North-Holland.
14. Fenton, N., Bieman, J. (2014). Software metrics: a rigorous and practical approach.

CRC press.
15. Morasca, S. (2010, May). On the use of weighted sums in the definition of measures.

In Proceedings of the 2010 ICSE Workshop on Emerging Trends in Software Metrics
(pp. 8-15).

16. Lavazza, L., Morasca, S., Robiolo, G. (2013). Towards a simplified definition of
Function Points. Information and Software Technology, 55(10), 1796-1809.

17. Bass, L., Clements, P., Kazman, R. (2003). Software architecture in practice.
Addison-Wesley Professional.

18. ISO/IEC 25010, System and Software quality models,
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

19. ISO/IEC 25023 - Measurement of system and software product quality,
https://www.iso.org/standard/35747.html

20. Chilenski, J. J., Miller, S. P. (1994). Applicability of modified condition/decision
coverage to software testing. Software Engineering Journal, 9(5), 193-200.

21. Gritzalis, D. A. (1998). Enhancing security and improving interoperability in
healthcare information systems. Medical Informatics, 23(4), 309-323.

22. Hovenga, E. J. S. (2008). Importance of achieving semantic interoperability for
national health information systems. Texto Contexto-Enfermagem, 17, 158-167.

23. Benson, T., Grieve, G. (2016). Principles of health interoperability: SNOMED
CT, HL7 and FHIR. Springer.

24. Blobel, B. (2020, September). The value of domain information models for achiev-
ing interoperability. In Phealth 2020: Proceedings of the 17th International Confer-
ence on Wearable Micro and Nano Technologies for Personalized Health (Vol. 273,
p. 75). IOS Press.

25. Morasca, S. (2004, September). On the definition and use of aggregate indices for
nominal, ordinal, and other scales. In 10th International Symposium on Software
Metrics, 2004. Proceedings. (pp. 46-57). IEEE.

26. Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., Ducasse, S.
(2013). Software quality metrics aggregation in industry. Journal of Software: Evo-
lution and Process, 25(10), 1117-1135.

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 116


