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Abstract. A more comprehensive use of biomass as raw material to produce 
food, energy and products would result in an important contribution towards the 
Sustainable Development Goals. The concept of biorefinery allows regions with 
abundant natural resources to make the most of available biomass for these pur-
poses, achieving progressive independence from fossil resources. This study pre-
sents a framework for the multi-criteria design of biorefinery supply chains (SC) 
under sustainability considerations. Therefore, an optimization approach of dif-
ferent scenarios is performed followed by a ranking based on the Data Envelop-
ment Analysis (DEA) model to assess the efficiency according to different eco-
nomic, environmental and social indicators. The capabilities of this approach are 
demonstrated through a case study of the biomass SC centered in the Northwest 
of Argentina. 

Keywords: Biomass, Multi-criteria decision-making, Data Envelopment Anal-
ysis 

1 Introduction  

Given the various risks at the global level such as climate change, world population 
increase and non-renewable resources depletion, there is a latent need and urgency to 
implement policies ensuring the sustainability of conventional production systems [1]. 
Consequently, actions are being conducted and planned in the countries’ agro-industrial 
sectors to achieve the Sustainable Development Goals (SDGs), such as those related to 
responsible consumption and production (SDG 12) and climate action (SDG 13) [2]. 

More comprehensive use of biomass as raw material to produce food, energy and 
products would result in an important contribution towards the goals pursued. The con-
cept of biorefinery allows regions with abundant natural resources to make the most of 
available biomass for these purposes, achieving progressive independence from fossil 
resources [3].  
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Decisions regarding the raw materials used, the design of bioproducts, production 
planning and distribution tasks must be addressed and evaluated together to ensure a 
sustainable management of the biorefinery supply chains (SC) [4][5]. Thus, the focus 
must be placed on the different SC echelons, during the design and planning stages, 
with well-defined sustainability criteria, involving economic, environmental and social 
indicators.  

The use of mathematical programming is well established as a tool for Supply Chain 
Management (SCM). However, the problem becomes more complex when incorporat-
ing multiple sustainability criteria, multiple raw materials (biomass) to be processed 
and an extensive portfolio of bioproducts [6]. The main goal of this work is to develop 
a decision support tool for the design of sustainable biorefinery SC (production-storage-
market) including the three sustainability dimensions: economic, environmental and 
social. This multi-criteria approach combines optimization, through mixed-integer lin-
ear programming (MILP), to find the most economical SC configurations; and Data 
Envelopment Analysis (DEA), to classify and find those that are more sustainable, in-
corporating their environmental and social performance. The capabilities of the ap-
proach are demonstrated through a case study addressing the SC of biorefineries in the 
northwest of Argentina. 

2 Proposed approach 

A three-stage strategy is proposed to select the bioproducts to produce and the most 
convenient SC topology based on sustainability aspects: (S1) MILP that minimize the 
total SC costs to satisfy certain products demand patterns, (S2) SC environmental and 
social indicators assessment, (S3) DEA to evaluate the SC networks obtained in S1 
considering the economic, environmental and social indicators from S2 (Fig. 1). 

 

 

Fig. 1. The three-stage approach for assessing the efficiency of a set of biorefinery SC net-
works.  

The SC structure includes biomass feedstocks, production and storage facilities, and 
demand locations. Different types of biomass could be selected and, in production 
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steps, different technologies could be selected for producing food, biofuels and bioen-
ergy. Various means of transportation between nodes are considered (for transporting 
biomass, solid products and liquid products). 

Decisions to be made in S1 include the type (technologies), number, location, capac-
ity and production level of the biorefinery plants, warehouses to be set up in different 
regions, transportation links and transportation modes that need to be established in the 
network, and product rates delivered to the markets. These decisions are those that en-
sure that the total costs are minimum for a given product portfolio. 

In S2, given life cycle inventories of the SC nodes and socioeconomic data of re-
gions, environmental and social indicators are calculated for each optimized SC result. 
Finally, in S3, DEA ranks the obtained SC configurations based on the indicators se-
lected to represent the SC sustainability.  

3 Methods  

In this section, the mathematical formulation for each stage is presented, describing the 
most relevant equations.  

 
3.1 Stage 1: Optimization model 

A MILP model previously presented [7] is used as a basis. It is a multi-period, multi-
raw material and multi-product formulation. Present total costs (𝑆𝐶 ) associated to 
the SC act as the objective function. They include costs related to biomass production 
(𝑇𝑀𝐶 ), installation of biorefineries and their production levels (𝑇𝐵𝐶 ), energy con-
sumption of biorefineries related to natural gas (𝑇𝐺𝐶 ) and electricity (𝑇𝐸𝐶 ), installa-
tion of warehouses and their average inventory levels (𝑇𝑆𝐶 ), and transportation links 
setting for raw materials and products (𝑇𝑇𝐶 ) along the SC (Eqs. 1 and 2). Indices and 
sets are shown in section Nomenclature. 

 

𝑆𝐶 = 𝑇𝐶 + ∑
( )

   
(1) 

𝑇𝐶 = 𝑇𝑀𝐶 + 𝑇𝐵𝐶 + 𝑇𝐸𝐶 + 𝑇𝐺𝐶 + 𝑇𝑆𝐶 + 𝑇𝑇𝐶   ∀𝑡 (2) 

 
3.2 Stage 2: Environmental and social evaluation  

Environmental impact assessment. The environmental performance of the SC net-
work is quantified following the first three phases of Life Cycle Assessment (LCA) [8]: 
goal and scope definition, inventory analysis, and impact assessment. In this stage, the 
calculation of environmental indicators uses the results obtained in the previous stage 
(i.e., the optimization problem). To do this, the following calculation scheme is pro-
posed. 

The total impact of the SC referred to the impact category 𝑒 (𝑆𝐶 ) over the time 
horizon is calculated using Eq. 3. This value accumulates the impacts associated with 
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each SC activity: 𝐼
,
 is the impact associated with the production and collection of 

raw materials, 𝐼
,
 is that associated with the installation and operation of biorefineries, 

𝐼
,
 is that generated by the different transportation instances along the SC, 𝐼

,
 is the 

one related to storage tasks, 𝐼
,
and 𝐼

,
 are the impacts associated with the production 

and use of external energy, electricity and natural gas, respectively. 

𝑆𝐶 = ∑ 𝐼
,

+  𝐼
,

+  𝐼
,

+  𝐼
,

+ 𝐼
,

+  𝐼
,

 ∀𝑒   (3) 

 
𝐼

,
 is calculated as the impact of raw materials 𝑖 ∈ 𝐼𝑅(𝑖) produced and used both 

in the same regions 𝑔 ∈ 𝐺𝐵(𝑔) ∩ 𝐺𝐻(𝑔) (represented by variable 𝐻 , ,  ) and produced 
in region 𝑔 ∈ 𝐺𝐻(𝑔) but transported and used in other regions 𝑔’ ∈ 𝐺𝐵(𝑔) (repre-
sented by variable 𝑄 , , , , ). In Eq. 4, 𝐼𝑚𝑝𝐶𝑎𝑡

,
 is the impact per tonne of raw ma-

terial 𝑖 ∈ 𝐼𝑅(𝑖) referred to impact category e. 

𝐼
,

= ∑ ∑ 𝐼𝑚𝑝𝐶𝑎𝑡
,

 (𝐻 , , +∈∈

∑ ∑ 𝑄 , , , ,, ∈, ∈ , ) ∀e, 𝑡  
 (4) 

Regarding biorefineries’ environmental impact (Eq. 5), it depends on the technolo-
gies selected and their production levels 𝑋 , , , . 𝐼𝑚𝑝𝐶𝑎𝑡

,
 is the impact per quantity 

of reference flow of technology 𝑘, referred to impact category e. 

𝐼
,

= ∑ ∑ ∑ 𝐼𝑚𝑝𝐶𝑎𝑡
,

 𝑋 , , ,∈ ∀𝑒, 𝑡  (5) 

For transportation impacts, 𝐼
,
, the impacts generated by the transportation of raw 

materials 𝑖 ∈ 𝐼𝑅(𝑖) from biomass producing regions 𝑔 ∈ 𝐺𝐻(𝑔) to biomass processing 
regions 𝑔 ∈ 𝐺𝐵(𝑔), those corresponding to the transportation of products 𝑖 ∈ 𝐼𝑀(𝑖) 
from the biorefineries to regions with warehouses 𝑔 ∈ 𝐺𝑆(𝑔), and the transportation of 
products 𝑖 ∈ 𝐼𝑀(𝑖) from the warehouses to the points of demand 𝑔 ∈ 𝐺𝐷(𝑔) are con-
sidered. Eq. 6 shows the calculation for the first transportation step mentioned above; 
here 𝑁𝐿 , , , ,  is the number of required trips for transportation of material 𝑖 by means 
of transportation mode 𝑙 from region 𝑔 to region 𝑔’ in time period 𝑡, 𝑑 , ’ is the distance 
between regions g and g’, 𝐼𝑚𝑝𝐶𝑎𝑡

,
 and 𝐼𝑚𝑝𝐶𝑎𝑡

,
 are the impacts generated per 

kilometer traveled by the transportation mode l fully or empty, respectively.  
𝐼

,
= ∑ ∑ ∑ ∑ 𝑁𝐿 , , , , (𝐼𝑚𝑝𝐶𝑎𝑡

,
𝑑 , +∈∈ , ,∈

𝐼𝑚𝑝𝐶𝑎𝑡
,

 𝑑 , ) ∀𝑒, 𝑡  
(6) 

Considering the possibility of circular economy implementations, the model in S1 
can decide to install technologies to produce energy streams, such as biogas from liquid 
wastes or electricity from lignocellulosic materials to reduce the external energy con-
sumption. This decision is reflected in the calculation of the environmental impact of 
the SC through Eqs. 7-9. In Eq. 7, the impact related to external electricity (𝐼

,
) is 

calculated considering the balance of electricity purchased from the grid (𝐸𝑃 , ) and the 
electricity exported to the grid (𝐸𝑋 , ). In this case, 𝐼𝑚𝑝𝐶𝑎𝑡  is the impact 𝑒 of con-
suming electricity from the external grid, per kWh. The impact related to electricity 
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produced in situ by the biorefinery (𝐼
,

) is calculated from the quantity of electricity 

generated by technology 𝑘 in biorefinery 𝑏, region 𝑔 and time period 𝑡 (𝑋 , , , ) and its 
specific environmental impact (𝐼𝑚𝑝𝐶𝑎𝑡

,
) per kWh produced (Eq. 8).  

𝐼
,

= ∑ 𝐼𝑚𝑝𝐶𝑎𝑡 (𝐸𝑃 , − 𝐸𝑋 , )∈ ∀𝑒, 𝑡  (7) 

𝐼
,

= ∑ ∑ ∑ 𝐼𝑚𝑝𝐶𝑎𝑡
,

𝑋 , , ,∈ ∀𝑒, 𝑡  (8) 

𝐼
,

= 𝐼
,

+ 𝐼
,

∀𝑒, 𝑡  (9) 

Finally, the impacts of consuming electricity from the network and those of produc-
ing it internally are added (Eq. 9). The biogas or natural gas impact calculation is similar 
to these for electricity. The impacts associated with storage are neglected with respect 
to the other SC impacts. 
Social impact assessment. In pursuit of a social indicator that represents the perfor-
mance of the installation and operation of biorefineries, while keeping the importance 
of regional features, the indicator developed by [9] is selected. This indicator considers 
socioeconomic data from the regions where biorefineries are installed, and the number 
of direct job generated by technologies at each biorefinery. 

The socioeconomic parameters necessary to calculate this social indicator are: eco-
nomically active population at each region g (𝐸𝐴𝑃 , as % of people with a job or look-
ing for one), the open unemployment rate at each region g (𝑂𝑈𝑅 , as % of the unem-
ployed population in relation to 𝐸𝐴𝑃 ) and the number of inhabitants in each region g 
(𝐻𝑎𝑏 ). These parameters will be different for each region that is analyzed and easily 
accessible through national census reports. 

From the number of technologies and biorefineries that are decided to be installed in 
S1 for different product portfolios, the number of jobs generated could be calculated 
(Eq. 10). 𝐿𝐸 ,  is the number of local jobs generated in each region 𝑔 ∈ 𝐺𝐵(𝑔) when a 
plant is installed (i.e., when binary variable 𝑧 , , , , , from S1, takes value of 1). 𝑁  
is the operating labor requirement (number of jobs generated) for technology 𝑘 opera-
tion (Eq. 10).  

𝐿𝐸 , = ∑ ∑ ∑ 𝑧 , , , ,  𝑁 ∀𝑔 ∈ 𝐺𝐵(𝑔), 𝑡  (10) 

𝑆𝐼 , =
𝛾  𝐿𝐸 ,

𝐻𝑎𝑏 𝐸𝐴𝑃 − 𝜆 𝐻𝑎𝑏 𝐸𝐴𝑃 𝑂𝑈𝑅
∀𝑔 ∈ 𝐺𝐵(𝑔), 𝑡 (11) 

𝑆𝐶 = ∑ ∑ 𝑆𝐼 ,∈   (12) 

Eq. 11 is the expression used to calculate the social index for the region g and time 
period t, where 𝛾 and 𝜆 are factors that allow weighting local employees and unem-
ployed, respectively. Finally, in Eq. 12, the social index of the SC (𝑆𝐶 ) over the time 
horizon is calculated. Remarkably the indicator is always positive. The higher the indi-
cator, the greater the number of jobs generated in regions with higher unemployment 
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rate. For each region g, it is assumed that the number of jobs generated can be absorbed 
by the inhabitants. 
 
3.3 Stage 3: DEA model 

After obtaining SC configurations for different product portfolios (in S1) and charac-
terizing each of them in social and environmental terms (in S2), in this stage, a ranking 
of the SCs is generated based on certain sustainability performance indicators. Multi-
criteria decision-making tools has resulted effective to deal with this purpose (e.g., an-
alytical hierarchy process, multi-attribute value theory and DEA). DEA, one of the most 
used tools, has the advantage of combining multiple indicators into a single score, with 
no need to define weights between the indicators avoiding subjectivity. DEA evaluates 
the relative efficiency of a set of N similar entities called decision-making units (DMU), 
which convert multiple inputs into multiple outputs. Inputs and outputs can be any per-
formance indicator. According to the methodology, inputs and outputs are quantities to 
minimize and maximize, respectively [10]. Depends on the formulation, there are un-
desirable outputs, which are outputs to the production process one might want to reduce 
(Fig. 2). A performance or efficiency score is calculated for each DMU, taking values 
between 0 and 1. DMUs with score equal to 1, are efficient becomes part of an efficient 
frontier. On the other hand, DMUs with scores lower than 1 are considered inefficient. 
DEA allows the identification of the improvements that the inefficient DMUs should 
target to become efficient.  

 

Fig. 2. Schematic of DEA operation. 

In this work, we use a non-radial slack-based measure (SBM) proposed by Tone [11] 
where undesirable outputs are considered inputs for evaluating DMUs efficiency 
scores. This nonlinear formulation is transformed into a linear one using the Charnes–
Cooper transformation [12] (see model M). 

𝜌∗ = min 𝑡 − ∑   

s.t. 
(M) 
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1 = 𝑡 + ∑   

∑ Λ 𝑋 + 𝑆 = 𝑥  𝑡 ∀𝑖  
∑ Λ 𝑌 − 𝑆 = 𝑦  𝑡 ∀𝑟  
𝑆 > 0 ∀𝑖, 𝑆 > 0 ∀𝑟, Λ > 0 ∀𝑗 
𝑡 > 0 

 
In this model, 𝜌∗ is the SBM-efficiency score, 𝑋  is the value of input i of DMU j, 

𝑌  is the value of output 𝑟 of DMU 𝑗, 𝑥  and 𝑦  are the values of input 𝑖 and output 
𝑟, respectively, of the DMU 𝑜 (under evaluation), 𝑆  and 𝑆  are the input and output 
slacks (i.e., the distance from the DMU assessed to the efficient frontier). 

4 Case study 

The aforementioned methodology is applied for the design of the SC of the Argentine 
Northwest agroindustry, considering the possibility of establishing biorefineries in the 
province of Tucumán, which is the largest producer of sugar, bioethanol (from sugar-
cane), and lemons in the country [13] [14].  

Table 1. Available biomass distribution, in tonnes per year. SHR: sugarcane harvest residues, 
LHR: lemon harvest residues, LP: lemon peel. 

Region SHR Cane LHR LP 

G01 1.59E+05 4.51E+05 7.35E+04 4.36E+05 

G02 8.55E+04 2.11E+06 1.84E+04 1.09E+05 

G03 2.40E+05 1.13E+06 9.64E+03 5.72E+04 

G04 5.09E+04 3.18E+06 2.24E+04 1.33E+05 

G05 3.28E+04 6.74E+05 0.00E+00 0.00E+00 

G06 3.41E+04 4.35E+05 9.40E+03 5.58E+04 

G07 5.40E+04 7.15E+05 1.52E+04 9.04E+04 

G08 2.73E+05 3.62E+06 0.00E+00 0.00E+00 

G09 4.58E+04 6.06E+05 1.21E+04 7.19E+04 

G10 1.20E+05 1.58E+06 1.96E+04 1.16E+05 

G11 7.72E+04 1.02E+06 7.16E+03 4.25E+04 

G12 2.75E+02 3.64E+03 0.00E+00 0.00E+00 

G13 2.00E+05 2.64E+06 0.00E+00 0.00E+00 

G14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G15 1.79E+03 2.37E+04 2.27E+04 1.35E+05 

G16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

G17 5.50E+02 7.28E+03 6.86E+03 4.07E+04 
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Geographic scope. This case study considers 23 provinces of Argentina and 17 depart-
ments of Tucumán (i.e., 40 geographic regions). Biomass producing regions, 𝐺𝐻(𝑔), 
and regions of potential location of biorefineries, 𝐺𝐵(𝑔), are G01 to G17 (within Tu-
cumán). Also, potential location of warehouses, 𝐺𝑆(𝑔), are G18 to G40 (out of Tucu-
mán province) while regions with product demands, 𝐺𝐷(𝑔), depends on the final prod-
uct considered.  

Biomass availability. Table 1 shows the biomass considered and the amount available 
in each region 𝑔 ∈ 𝐺𝐻(𝑔): sugarcane, sugarcane harvest residues (SHR), lemon peel 
(LP) and lemon harvest residues (LHR). Technical and economic data for sugarcane 
and biomass residues are taken from literature [7], while for lemon biomass are esti-
mated from regional studies and reports [15] [16]. 

Table 2. Inputs and outputs for each technology k. SHR: sugarcane harvest residues, LHR: 
lemon harvest residues, LP: lemon peel, DLP: dehydrated lemon peel. 

Technology Inputs Outputs  Technology Inputs Outputs 

K00 - Cane 
- Cane juice 
- Bagasse 

 K10 - Cane juice 
- Ethanol 
- Vinasses 

K01- K02 
- SHR 

- Bagasse 
- LHR 

- Hexoses 
- Xiloses 

 K11 - Hexoses - Ethanol 

K03 

- Hexoses 
- Cane juice 

- Honey 
- Molasses 

- Citric acid  K12 
- Hexoses 
- Xiloses 

- Ethanol 

K05 

- SHR 
- Bagasse 

- LHR 
- LP 

- Methanol  K13 

- Hexoses 
- Cane juice 

- Honey 
- Molasses 

- Lactic acid 

K06 - Cane juice 
- White sugar 
- Raw sugar 
- Molasses 

 K14 

- SHR 
- Bagasse 

- LHR 
- LDP 

- Electricity 

K07 - Cane juice 
- White sugar 
- Raw sugar 

- Honey 
 K15 - Vinasses - Biogas 

K08 - Molasses 
- Ethanol 
- Vinasses 

 K16 - LP 
- Hexoses 
- Xiloses 

- Limonene 

K09 - Honey 
- Ethanol 
- Vinasses 

 K17 - LP - DLP 

Biomass processing. The final products considered are: white and raw sugar, first- and 
second-generation ethanol, citric acid, lactic acid, methanol, biogas and electricity. 
Technologies can process 17 raw material and intermediate flows. Technical and eco-
nomic parameters came from literature for sugarcane and from [16] [17] for lemon pro-

SIIIO, Simposio Argentino de Informática Industrial e Investigación Operativa

Memorias de las 51 JAIIO - SIIIO - ISSN: 2451-7496 - Página 163



cessing. Table 2 sums up possible inputs and outputs for each technology 𝑘. Technol-
ogies could be installed with two different capacities (small or large). Transportation 
and storage parameters are taken from previous works [7] [18]. 

Scenarios. Eight scenarios (E1-E6) are proposed with different possibilities of products 
to offer and with different progressions over the time horizon. Table 3 shows regions 
𝑔 ∈ 𝐺𝐷(𝑔) and its demands of bioproducts. The annual demand of conventional prod-
ucts (sugar and ethanol) is taken from national reports [13]. Demands for new bioprod-
ucts to be produced (citric acid, lactic acid and methanol), are estimated with the aim 
of replacing country imports of these products [19] and covering these requirements 
with national products produced from regional biomass. Each scenario is described in 
Table 4; increasing, decreasing and constant demands for bioproducts are proposed ac-
cording to the scenario analyzed. The time horizon is 5 year long. 

Table 3. Product demand (tonne/year). 

Province  White sugar Ethanol Citric acid Lactic Acid  Methanol 

Buenos Aires G18 96281 34718 12745 894 826 

Córdoba G19 105721 38122 12745 671 - 

Corrientes G20 31968 11527 - - - 

La Plata G21 476625 171867 - 671 - 

La Rioja G22 12208 4402 - - - 

Mendoza G23 54748 19742 - - - 

Neuquén G24 17243 6218 - - - 

Entre Ríos G25 39645 14296 - - 112 

Misiones G26 34108 12299 - - - 

Chubut G27 14474 5219 - - - 

Chaco G28 33227 11981 - - - 

Santa Cruz G29 7173 2587 - - - 

Salta G30 38639 13933 - - - 

San Juan G31 22025 7942 - - - 

San Luis G32 13844 4992 6372 - 86 

Jujuy G33 21521 7760 - - - 

Santa Fe G34 101945 36761 - - 3792 

La Pampa 
(General Pico) 

G35 10572 3812 - - 204 

Santiago G36 27311 9848 - - 76 

Catamarca G37 10824 3903 - - - 

Río Negro 
(General Roca) 

G38 18879 6808 - - - 

Formosa G39 16990 6127 - - - 
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Tierra del 
Fuego 

G40 4027 1452 - - - 

Table 4. Scenarios. C: constant demand over time horizon, V: variable demand over time 
horizon with % of increment or decrement annual in brackets, X: no demand over time horizon. 

Scenario White sugar Ethanol Other bioproducts 
E1 C C X 

E2 V (-5%) V (+5%) X 

E3 V (-10%) V (+10%) X 

E4 C C C 

E5 C C V* 

E6 X V (+10%) C 

E7 X X C 

E8 X C V*  

* It is planned to cover the demand in 5 years with an increase in production of 20% per year. 

Environmental aspects. For the quantification of the environmental parameters 
described in Section 3.2, the inventories of each SC stage are built with a gate-to-gate 
approach following the LCA guidelines. In this case study, only one category impact 
referring to climate change is quantified: the Global Warming Potential (GWP) 
indicator of the ReCiPe 2016 methodology. Inventories for biomass and conventional 
technologies are taken or adapted from literature and previous works [7] [18] [20] [21] 
[22]; for new technologies are built based on literature previously cited in [7] [16]; for 
transportation and for production and use of external natural gas and electricity are 
taken from Ecoinvent 3.8 [23]. 

Social aspects. For the calculation of the social index (Section 3.2), direct jobs 
generated by technologies, 𝑁 , are estimated using the method proposed by [24] 
based on a correlation that depends on the number of steps (reactors, towers, heaters, 
exchangers, etc.) involved in each technology. For the calculation are considered three 
shifts per day as is common in industrial activities in these industrial activities. 
Socioeconomic parameters (i.e., 𝐻𝑎𝑏 , 𝐸𝐴𝑃  and 𝑂𝑈𝑅 ) for each region where 
biorefineries could be installed, 𝐺𝐵(𝑔), are taken from INDEC [25]. 

DEA. The eight optimal SC networks resulting from S1 (one for each scenario) are. 
considered as DMUs of the DEA model. For this case study, the following indicators 
are selected as DEA parameters, previously calculated in S1 and S2 from the 
optimization results: 

Percentage of utilization of raw material (η). The purpose of a biorefinery is to obtain 
the largest amount of bioproducts from a given amount of biomass to promote its 
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maximum use. This indicator is calculated by dividing the total amount of final products 
produced in the biorefineries by the amount of raw material required. This is a desired 
output in the model. 

Indicator of related to the benefits, f(c). All production activities seeks to maximize its 
benefits by minimizing costs for a given business objective, biorefineries would not be 
an exception. Given the great uncertainty presented by the estimation of prices of 
bioproducts in the market, it is decided to incorporate as an economic indicator a cost 
function represented by a large enough number from which the total costs associated 
with SC is subtracted. This is a desired output in the model. 

Global warming potential, GWP. This environmental indicator calculated for the entire 
SC under study (Eq. 3, 𝑆𝐶 ) is an undesired output of the model. 

Social index, 𝑆𝐶 . The social index presented in section Methodology and evaluated for 
the entire SC under study (Eq. 12) is a desired output of the model. 

 
Stages S1 and S2 are solved together, implemented in GAMS®, by using the MILP 

solver CPLEX 11.0 on a DELL DESKTOP-OMKAB82 PC with an Intel(R) Core (TM) 
i5-9500, 3.00 GHz and 8 Gb of RAM. The resulting model contains 129,699 equations, 
181,313 continuous variables, and 5760 discrete variables. The CPU time spent to find 
the optimal solutions is in the order of 103 seconds to a less than 5% optimality gap 
(averages of all scenarios). The DEA model (S3) is also implemented in GAMS® and 
solved as a linear problem with negligible statistics with respect to the aforementioned 
one (less than one second per DMU analyzed).  

5 Results 

Table 5. S2 results in terms of indicators considered as parameters in DEA model. 

Scenario η f(𝑆𝐶 ) 𝑆𝐶  𝑆𝐶  

E1 0.46 0.15 0.95 0.75 

E2 0.46 0.15 0.88 0.90 

E3 0.42 0.16 0.88 1.00 

E4 0.47 0.18 0.88 0.60 

E5 0.46 0.15 1.00 1.00 

E6 0.27 0.61 0.28 0.25 

E7 0.24 0.55 0.36 0.35 

E8 0.25 0.61 0.28 0.30 

 
The capabilities and results of the optimization model in S1 and their analysis were 

presented in previous works [7]; hence, in this work, the emphasis is placed on the 
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results provided by S2 and S3. Table 5 and Fig. 3 summarize the main results obtained. 
Table 5 presents the normalized indicators calculated for each scenario in S2. Fig. 3 
shows the efficiency frontier representing the normalized social and environmental 
indicators of each scenario as ordered pairs. 

Those SCs resulting from scenarios E3, E6 and E8 turn out to be the efficient ones 
in terms of the evaluated indicators. The other scenarios present some distance from the 
frontier whose distance depends on the indicators analyzed. 

Among the efficient scenarios, E6 and E8 show certain similarity, with identical 
economic and environmental indicators (low environmental impact and good economic 
performance), showing a compromise relationship between the efficient use of 
resources and social impact. Instead, the E3 solution represents a very different 
situation with a high environmental impact and low performance from the economic 
point of view, being a desired solution from the social point of view. This clearly 
demonstrates the existing trade-off between the selected indicators. E3 is characterized 
by the decrease in sugar consumption and the increasing production of ethanol, that is, 
a trend towards autonomous distilling. The installation of biorefineries with sugar and 
ethanol production technologies and treatment of vinasses takes place in regions that 
have a positive influence on the social indicator. In addition, the use of raw material 
(sugarcane) is one of the highest compared to other scenarios. Technologies installed 
in the first period in this scenario are K00, K06, K07, K08, K09, K10 and K15, while 
in the second and third period K10 technologies are installed to obtain ethanol directly 
from sugarcane juice. In total, seven biorefineries are installed in the first period in 
regions G02, G04, G06, and G13-G16. 

 

 

Fig. 3. Efficiency frontier. Values in brackets are the efficiency score for each scenario E. 

It should be noted that the E7 solution is close to the efficiency frontier and through 
some modifications an efficient scenario could be obtained. 
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6 Conclusions 

This paper presents a framework for the multi-criteria design of biorefinery SCs 
under sustainability considerations. Therefore, an optimization approach of different 
scenarios is performed followed by a ranking based on the DEA model to assess the 
efficiency according to different economic, environmental and social indicators. Future 
work projections include adding new indicators, performing super-efficiency analysis 
onto the efficient points, and proposing improvements on the SCs to make them more 
efficient. 

Nomenclature 

Indices 
c = capacity  
e = impact category 
g = regions 
i = materials 
k = technologies  
l = transportation modes 
t = time periods  

Sets 
GH(g) = subset of regions that can produce raw materials 
GB(g) = subset of regions that can install biorefineries  
GS(g) = subset of regions that can install storage facilities 
GD(g) = subset of regions that have products demand requirements 
IL(i, l) = set of set of ordered pairs that link materials i to transport modes l  
IR(i) = subset of materials that are raw materials  
II(i) = subset of materials that are intermediate materials (produced and consumed in 
the biorefinery)  
IM(i) = subset of materials that are final products 
K-(k, i) = set of ordered pairs that link technologies k that consume materials i  
K+(k, i) = set of ordered pairs that link technologies k that produce materials i  
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