
A preliminary GQM model to evaluate web API
usability⋆

Ariel Machini1[0000−0002−2589−8182] and Sandra Casas2

1 Centro de Investigaciones y Transferencias Santa Cruz, Ŕıo Gallegos, Argentina
2 GISP, Universidad Nacional de la Patagonia Austral, Ŕıo Gallegos, Argentina

Abstract. Web APIs allow easy access to a variety of resources and ser-
vices, and it is because of that they have become essential for building
modern applications. This generated a new business perspective, “the
API economy”, and for that reason, usability now turns into a key char-
acteristic for the acceptance of a web API. Although web API usabil-
ity is a researched topic, no studies proposing a usability model for web
APIs have been found. For that reason, this study presents a preliminary
model to help standardize and facilitate web API usability assessment.
Our model, based on the GQM approach, has six goals, eight questions,
and 32 metrics. We evaluated its usefulness through a survey directed to
web API consumers and developers. Feedback suggests that the model is
on the right track, and could have a positive impact on web API usability
in the future.

Keywords: Web API usability · Model · Metrics · GQM

1 Introduction

An API (Application Programming Interface) is a software-to-software interface
that defines the contract for applications to talk to each other over a network
without user interaction. The term API may mean different things to different
people, depending on the context: There are APIs for operating systems, appli-
cations, and the web. Today, when we talk about APIs, we probably refer to web
APIs built using REST (Representational State Transfer) technologies. Hence,
web APIs are synonymous to REST APIs [1].
Over the last decade, web APIs have become one of the pillars of modern ap-
plication development [2]. Web APIs allow building different kinds of software,
from simple web apps that display data from multiple external sources to more
complex applications based on microservices, such as Netflix, that take advan-
tage of web APIs to create new value. In addition to promoting software reuse,
and access to resources and services among organizations, web APIs recently
generated a new business perspective known as the API economy [3]. The web
API market is very competitive and, because of that, the usability of a web API
becomes a key characteristic to determine its value [4].

⋆ Supported by CONICET.

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 1



2 A. Machini, S. Casas

Usability is considered one of the most important software quality attributes [5]
and, even though it has many definitions, the definition given by ISO 9241-11
is probably the most popular one: “The extent to which a product can be used
by specified users to achieve specified goals with effectiveness, efficiency, and
satisfaction in a specified context of use”.
Through a literature review—carried out to identify and categorize metrics that
influence web API quality and usability—, we identified 96 metrics, of which
86 are related to API usability. This analysis also evidenced a lack of standard-
ization in the area of usability models for web APIs, and a lack of research in
the area of metrics and web API usability (only 12 of the 86 usability-related
metrics were explicitly linked to web APIs). Despite there being studies that
propose different methods and models for the analysis, improvement and assess-
ment of API usability, they are mainly focused on local APIs, and centered on
API documentation. [6] also states that “the common problem with the metric
approach is that the works are somewhat associated with a usability model, but
the metrics derived are not related with a usability characteristic or are associ-
ated with only a few of these usability characteristics”.
Because of that, in this work, we present a preliminary GQM (Goal-Question-
Metric) [7] model with the aim to facilitate web API usability assessment. This
artifact, containing six goals, eight questions and 32 metrics, was designed fol-
lowing the DSR (Design Science Research) approach [8]. We validated our work
through a survey specifically directed to web API consumers and developers.
This paper is structured as follows: Section 2 describes the methodology fol-
lowed; Section 3 details the proposed model; Section 4 shows how the model
was evaluated; Section 5 presents threats to validity; and Section 6 discusses the
results obtained and future work.

2 Methods

To design the artifact (the model), we followed the DSR approach [8]. This
approach, generally applied in engineering and computer science fields, is used
to build artifacts to provide useful and effective solutions to a problem in a given
domain. These are the steps we followed to construct our artifact:

– Step 1 – Identify research problem: The lack of a web API usability
model. This problem is detailed further in Section 1.

– Step 2 – Define objectives of a solution: Build a web API usability
model (the artifact).

– Step 3 – Design and development of the artifact: Apply the GQM ap-
proach to construct the model, defining the conceptual (Goals), operational
(Questions) and quantitative (Metrics) levels.

– Step 4 – Demonstration and evaluation of the artifact: The elements
(metrics) of the model were evaluated through a survey directed to web API
consumers and developers.

– Step 5 – Communication: Communication of results through this docu-
ment.

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 2



A preliminary GQM model to evaluate web API usability 3

Now, we will detail the third step, which consisted in the design and development
of the model. We performed an iterative bottom-up process, consisting of the
following activities:

1. Collection of initial metrics: The main source for API usability metrics
was papers coming from the literature review [6,9,10,11,12,13]. A total of 81
metrics were collected in this step.

2. Mapping of the metrics: Usability metrics proposed only for local APIs
were mapped to web APIs when needed and possible. Note that not all the
metrics were designed for or convertible to this type of APIs.

3. Collection of additional metrics: Because only 35.80 % (29 out of the
81) of the metrics found were deemed applicable to web APIs, a search for
additional metrics was performed. Sources consulted included blogs, reports,
and design guides published by recognized organizations on the web API
industry [14,15,16,17,18,19], and some of the metrics were author proposed.

4. Grouping metrics by usability attribute(s): Some of the sources clas-
sified their metrics into usability attributes. When this was not the case,
metrics were classified using Nielsen’s usability attributes [20], depending on
their theoretical definition.

5. Defining goals and questions: Usability attributes’ definitions and aims
were considered to establish the model’s Goals and Questions (part of the
GQM model).

6. Specification of the metrics:Metrics from the set were distributed among
the Questions, considering each metric’s definition and the problems targeted
by the questions. Description, type (subjective/objective) and the way to
calculate their value was detailed.

Fig. 1 summarizes these activities in a graphical manner, and it also shows future
steps planned for the model development process.

Fig. 1. Development process of the GQM model proposed.

2.1 The GQM approach

As we mentioned, the model presented in this article was built following the
guidelines described by [7], in which the authors describe the GQM approach.
According to the authors, “The result of the application of the Goal Question

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 3



4 A. Machini, S. Casas

Metric approach is the specification of a measurement system targeting a par-
ticular set of issues and a set of rules for the interpretation of the measurement
data”. They also explain that the model has three different, but related, levels:

– Conceptual level (Goals): Goals are defined for objects, which can be
products (artifacts, deliverables, and documents that are produced during
the system life cycle), processes (software related activities normally associ-
ated with time) and resources (items used by processes in order to produce
their outputs).

– Operational level (Questions): Questions are used to characterize the
way the achievement of a specific goal is going to be performed. Questions
try to characterize the object of measurement with respect to a selected
quality issue and to determine its quality from the selected viewpoint.

– Quantitative level (Metrics): A set of data is associated with every ques-
tion in order to answer it in a quantitative way. The data can be objective
(if they depend only on the object that is being measured) and subjective (if
they depend on both the object that is being measured and the viewpoint
from which they are taken).

In their paper, they describe a GQM model as a hierarchical structure starting
with a goal (specifying purpose of measurement, object to be measured, issue
to be measured, and viewpoint from which the measure is taken). The goal is
refined into several questions, that usually break down the issue into its major
components. Each question is then refined into metrics, some of them objective,
some of them subjective.

3 Results

In this section, we will extensively detail all the Goals, Questions, and Metrics of
the model we propose. Fig. 2 presents all of these components hierarchically. Note
that most of the model’s components came from the literature review mentioned
in Section 2.

3.1 Goals

Here, we will detail all the components of the GQM model that we built. The
six goals were constructed based on the definition of the usability attributes:
G1 responds to Learnability, Understandability and Knowability ; G2 responds
to Efficiency ; G3 to Memorability and Knowability ; G4 to Errors, G5 to Ro-
bustness and G6 to Satisfaction. Note that we grouped attributes that have a
similar definition into the same Goal. Each of the mentioned attributes come
from the findings of the mapping, many of them being Nielsen’s attributes [20].
For context purposes, we will elaborate the attributes considered by our model:

– Learnability: How easy is it for users to accomplish basic tasks the first
time they encounter the design? (in this case, the web API). Found in [20].

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 4



A preliminary GQM model to evaluate web API usability 5

Fig. 2. The web API usability GQM model.

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 5



6 A. Machini, S. Casas

– Understandability: The effort required to understand the semantics of
API features based on their names and documentation. Found in [21].

– Knowability: Implies the ease of understanding, learning and remembering
the API. Among others, this attribute is mainly related to the naming of the
API elements. Found in [9].

– Efficiency: Once users have learned the design, how quickly can they per-
form tasks? Found in [20].

– Memorability: When users return to the design (in this case, the web API)
after a period of not using it, how easily can they reestablish proficiency?
Found in [20].

– Errors: How many errors do users make, how severe are these errors, and
how easily can they recover from the errors? Found in [20].

– Robustness: The capacity of the system to resist error and adverse situa-
tions. Found in [6].

– Satisfaction: How pleasant is it to use the design (in this case, the web
API)? Found in [20].

3.2 Questions

Each Question in the model was designed with the above described usability
attributes in mind. To ensure no detail was overlooked, we thoroughly analyzed
the theoretical definition of each of these attributes.

3.3 Metrics

We distributed the metrics from the set among the Questions, considering each
metric’s definition and the problems targeted by the questions. To define the type
of each metric (objective or subjective), we looked at the measurement process
that has to be performed in order to get a value for the metric. We thought: “Is
the process of picking a value for this metric as easy as picking between black
and white, or is it as complex as picking between shades of gray?” – With this
question, we meant that objective metrics should be easy to calculate regardless
of the possible values, since there is no subjectivity tied to them, and in contrast,
that subjective metrics need some kind of human intervention (from who wants
to perform the measurement) to determine their value. Tab. 1 details all metrics
encompassed by our model. In the second column of Tab. 1 (Metric), there are
a few metrics with a (P) following their name. These metrics were proposed
by the authors and were designed considering the different elements that a web
API has. In the third column (Type), S represents subjective metrics, while O
represents objective metrics.
Now, we will proceed to add supplementary information for certain metrics:

– API elements documented (M1.1.4): We suggest the formula
Documented elements

Total elements ×100 to calculate the percentage of documented elements.
The API provider should aim for a value of 100 %.

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 6



A preliminary GQM model to evaluate web API usability 7

Table 1. List of metrics (quantitative level).

Code Metric Type Description Attributes Measurement

Clarity of names [6] S How self-explanatory are API elements’ names. Observation

Data type specificity [6] S Observation

M1.1.3 S Observation

M1.1.4 API elements documented [6] O Number or percentage of API elements documented.

M1.1.5 Number of endpoints [11, 19] O The number of endpoints the API has.

O The number of parameters an endpoint has.

Number of return values [11] O The number of values an endpoint returns.

Appropriate String usage [11] S Observation

API method name confusion index [13] S Observation

Complexity of returned value (P) S Observation

M1.1.11 S Level of detail error messages returned. Observation

M1.1.12 Versioning [14, 17, 18, 19] O If an API uses versioning.

M1.1.13 O If an API supports more than one return format.

M1.1.14 OAuth usage for authentication [19] O Observation

M1.1.15 Proper usage of response headers [14] S Whether response headers are properly defined or not. Observation

M1.1.16 Developer Stack Size [15] O Observation

Endpoint name similarity [9] S Observation

M1.2.4 Usage of verbs in base URLs [18, 19] S Observation

M1.2.5 S If plural nouns are used for naming resources (where it makes sense). Observation

M1.2.6 Level of abstraction of names [19] S Observation

M1.3.1 S Observation

M1.3.2 S If usage examples/tutorials are included in the documentation. Observation

M1.3.3 S If information about possible errors is included in the documentation. Observation

M2.1.4 O Efficiency

M2.1.6 O Efficiency Observation

M2.1.7 Task-Invocation Ratio [15] O Number of calls to the web API required to complete a task. Efficiency Observation

M3.1.2 Number of path elements [9, 19] O

M3.1.5 Element naming consistency [6] S If some kind of pattern is followed for naming elements. Observation

M4.1.1 O Errors

M5.1.1 O Robustness

M6.1.1 Price [6, 10] O Cost to use the API. Satisfaction Observation
M6.1.2 User rating [10] O Rating given to the API by its users (if available). Satisfaction Observation

M1.1.1
M1.2.2
M3.1.3

Learnability
Understandability

Knowability
Memorability

M1.1.2
M3.1.4

How specific are the data types used. They should be as specific as 
possible, to make code more readable.

Learnability
Understandability

Knowability
Memorability

Completion of task declared in endpoint 
name [6]

If an endpoint does what its name suggests. An endpoint should only 
perform tasks described by its name.

Learnability
Understandability

Knowability
Learnability

Understandability
Knowability

Observation or 
automated

Learnability
Understandability

Knowability

Observation or 
automated

M1.1.6
M2.1.1

Number of endpoint parameters [11, 12, 
13]

Learnability
Understandability

Knowability
Efficiency

Observation or 
automated

M1.1.7
M2.1.2

Learnability
Understandability

Knowability
Efficiency

Observation or 
automated

M1.1.8
M2.1.3

If Strings are used only when needed. Strings should not be used if a 
better type exists, since they are cumbersome and error-prone.

Learnability
Understandability

Knowability
Efficiency

M1.1.9
M1.2.3

Name similarity between endpoints with akin functionality (generally, 
new versions of the same endpoint).

Learnability
Understandability

Knowability

M1.1.10
M2.1.5

Complexity of the response (for example, the amount of elements of a 
JSON).

Learnability
Understandability

Knowability
Efficiency

Verbosity of error messages returned [18, 
19]

Learnability
Understandability

Knowability
Learnability

Understandability
Knowability

Observation or 
automated

Support for multiple return formats [14, 
17, 19]

Learnability
Understandability

Knowability

Observation or 
automated

If an API uses OAuth for authentication. OAuth is a recognized 
standard, which can facilitate user experience.

Learnability
Understandability

Knowability
Learnability

Understandability
Knowability

Number of additional tools and libraries a developer need to install in 
order to use the API.

Learnability
Understandability

Knowability

M1.2.1
M3.1.1

If an API has endpoints with similar names but different functionality.

Learnability
Understandability

Knowability
Memorability

If verbs are used in base URLs (e.g., having an endpoint called 
“/createPerson”).

Learnability
Understandability

Knowability

Usage of plural nouns for resource names 
[14, 17, 18, 19]

Learnability
Understandability

Knowability

Level of specificity of resource names (e.g., naming a resource 
“videos” instead of “items”, where “items” is the more general form).

Learnability
Understandability

Knowability

Identification of deprecated elements in 
documentation [6]

If information about deprecated elements is included in the 
documentation.

Learnability
Understandability

Knowability

Inclusion of usage examples in 
documentation [6]

Learnability
Understandability

Knowability

Inclusion of error information in 
documentation [6]

Learnability
Understandability

Knowability
Number of consecutive endpoint 
parameters of the same type [11]

If an endpoint requires, consecutively, multiple parameters of the 
same type.

Observation or 
automated

Support for data filtering, pagination and 
sorting [14, 15, 16, 17, 19]

If it is possible to filter, paginate and sort information returned by the 
web API.

Path depth (for example, /analytics/events/aggregate/ID, has three 
elements).

Memorability
Knowability

Observation or 
automated

Memorability
Knowability

Number of HTTP 4XX errors in a period 
of time (P)

Number of HTTP errors from the 4XX group happening in a certain 
period of time.

Observation or 
automated

Number of HTTP 5XX errors in a period 
of time (P)

Number of HTTP errors from the 5XX group happening in a certain 
period of time.

Observation or 
automated

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 7



8 A. Machini, S. Casas

– Number of endpoints (M1.1.5): The number of endpoints could be
counted automatically. As for a suggested value, [19] points out that a “man-
ageable” value for this metric should be between 12 and 24, so less than 24
endpoints is acceptable.

– Number of endpoint parameters (M1.1.6/M2.1.1): We suggest the

formula
∑n

i=1 Number of parameters

Number of endpoint verbs , where n is the number of endpoint verbs.

Considering the suggestions in [11,13], the number of parameters should be,
at most, 4 or 5. This metric can be used for each endpoint verb, or to get an
average.

– Number of return values (M1.1.7/M2.1.2): We suggest the formula∑n
i=1 Number of return values

Number of endpoint verbs that return values , where n is the number of endpoint
verbs that return values. This metric can be used for each endpoint verb
that returns, at least, one value, or to get an average.

– Versioning (M1.1.12): The value for this metric could be determined au-
tomatically simply by analyzing the web API’s URL.

– Support for multiple return formats (M1.1.13): The value for this
metric could be automatically computed by analyzing the web API’s speci-
fication, if available.

– Number of consecutive endpoint parameters of the same type
(M2.1.4): The value for this metric could be automatically computed using
a counter to detect type streaks.

– Number of path elements (M3.1.2): The value for this metric could
be automatically computed by counting the number of elements that an
individual path has, which determine its depth. [19] suggests a value of 2
elements per resource.

– Number of HTTP 4XX errors in a period of time (M4.1.1) and
Number of HTTP 5XX errors in a period of time (M5.1.1): Similar
to [9], values for these metrics could be automatically computed using logs.

4 Evaluation

Initial model evaluation was done through a survey designed for web API con-
sumers and developers. Respondents provided their opinion (in a scale from 1 to
5) on the influence of metrics encompassed by our model over web API usability.
This survey, designed according to the guidelines in [24], was available between
the 27th of September 2023 and the 1st of December of the same year. A total of
36 people from different countries, with varying levels of experience, responded
to the survey. Most of the participants (94.6 %) are from Spanish-speaking coun-
tries, identify as expert software developers (63.9 %) and have between 5 and 10
years of experience with web APIs (38.9 %). Also, the majority of respondents
are back-end developers (80.6 %), followed by these who work with databases
(63.9 %) and front-end developers (55.6 %). In Fig. 3 and Fig. 4 we present, in
a summarized way, the answers given by the respondents.

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 8



A preliminary GQM model to evaluate web API usability 9

API elements documented

API method name confusion index

Appropriate String usage

Clarity of names

Completion of declared task

Complexity of returned value

Data type specificity

Developer Stack Size

Element naming consistency

Endpoint name similarity

Errors (HTTP 5XX errors)

Identification of deprecated elements in documentation

Inclusion of error information in documentation

Inclusion of usage examples in documentation

Level of abstraction of names

Number of consecutive endpoint parameters of the same type

Number of endpoints

Number of parameters

Number of path elements

Number of return values

OAuth usage for authentication

Price

Proper usage of response headers

Support for data filtering, pagination and sorting

Support for multiple return formats

Task-Invocation Ratio

Usage of plural nouns for resource names

Usage of verbs in base URLs

Verbosity of error messages returned

Versioning

0 5 10 15 20 25 30 35

1

2

3

4

5

Number of respondents

Fig. 3. Distribution of opinions given by respondents.

API elements documented

API method name confusion index

Appropriate String usage

Clarity of names

Completion of declared task

Complexity of returned value

Data type specificity

Developer Stack Size

Element naming consistency

Endpoint name similarity

Errors (HTTP 5XX errors)

Identification of deprecated elements in documentation

Inclusion of error information in documentation

Inclusion of usage examples in documentation

Level of abstraction of names

Number of consecutive endpoint parameters of the same type

Number of endpoints

Number of parameters

Number of path elements

Number of return values

OAuth usage for authentication

Price

Proper usage of response headers

Support for data filtering, pagination and sorting

Support for multiple return formats

Task-Invocation Ratio

Usage of plural nouns for resource names

Usage of verbs in base URLs

Verbosity of error messages returned

Versioning

0 1 2 3 4 5

Fig. 4. Median opinions given by respondents.

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 9



10 A. Machini, S. Casas

5 Threats to validity and limitations

In the DSR approach, validity centers on whether the artifact solves the prob-
lem it was designed to address. [8] dedicates a step of this approach to artifact
evaluation, which in this study consisted of a survey directed to web API pro-
fessionals. Surveys are a reliable method to evaluate and validate DSR artifacts,
as proposed by [22].
Additionally, in [23] two types of validity for DSR are presented: Summative and
formative. Summative validity refers to the empirical evaluation of the artifact,
while formative validity refers to correctly following an accepted procedure.
Regarding summative validity, we performed a survey on the importance of the
elements belonging to the quantitative level of the model (the metrics), follow-
ing the guidelines in [24]. In this sense, it remains to validate the full model,
specifically the operational and conceptual levels. Regarding formative validity,
as explained in Section 2.1, the model was built following the GQM approach.
This approach, widely known and tested in the field of software engineering and
other disciplines, has a layered structure that follows the most classical theory
of usability for software products, proposed by Nielsen [5].

6 Discussion and conclusions

In this work, we have presented a preliminary model based on the GQM ap-
proach for the evaluation of web API usability, defining its three corresponding
levels: conceptual (Goals), operational (Questions), and quantitative (Metrics).
Because the majority of the metrics collected were not proposed in the context
of a usability model (only [6] did, however, their work focuses on local APIs),
and many of them were not linked to any usability attributes (only [6] and [9]
linked their metrics to usability attributes), the main contribution of this work
is the integration and organization of a wide range of metrics around usability
attributes, in a model. With a set of six goals, eight questions, and 32 metrics,
we consider that our model could help better understand the key aspects of
web API usability assessment. The set of metrics, not definitive in this instance,
is composed of 16 objective metrics and 16 subjective metrics. This fifty-fifty
distribution was not intentional, as whether a metric is subjective or objective
depends on its theoretical definition, and it indicates that using the model will
require a variety of methods for collecting and evaluating values for these indi-
cators.
The results of the survey presented in Section 4 indicate that except for the
number of consecutive parameters of the same type an endpoint has, all metrics
are meaningful since respondents have provided them with a median value of in-
fluence over web API usability of 3 or more. Particularly, metrics with a median
value of 4 or 5 are of most importance: API elements documented (M1.1.4); Clar-
ity of names (M1.1.1/M1.2.2/M3.1.3); Completion of task declared in endpoint
name (M1.1.3); Errors (Number of HTTP 5XX errors – M5.1.1); Identification
of deprecated elements in documentation (M1.3.1); Inclusion of error informa-
tion in documentation (M1.3.3); Inclusion of usage examples in documentation

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 10



A preliminary GQM model to evaluate web API usability 11

(M1.3.2); API method name confusion index (M1.1.9/M1.2.3); Data type speci-
ficity (M1.1.2/M3.1.4); Element naming consistency (M3.1.5); Endpoint name
similarity (M1.2.1/M3.1.1); Number of endpoint parameters (M1.1.6/M2.1.1);
Number of return values (M1.1.7/M2.1.2); Price (M6.1.1); Proper usage of re-
sponse headers (M1.1.15); and Support for data filtering, pagination and sorting
(M2.1.6). All of these metrics can be seen in Fig. 4. It is also important to point
out that, even though Number of consecutive endpoint parameters of the same
type (M2.1.4) received a median value of 2 out of 5, it is considered a significant
usability factor by [11] and [13].
Regarding usability attributes, as seen in Fig. 2 and Tab. 1, the majority of the
collected metrics belong to G1 (To measure how difficult a web API is to learn,
from a new user’s perspective), more specifically, to Q1.1 (How can the difficulty
for users to accomplish basic tasks be measured?). This suggests that Learnabil-
ity, Understandability, and Knowability are central to web API usability. As
[4] stated, “Any good API should be easy to learn and use”. G2 (To measure
how difficult is to perform tasks in a web API, from the user’s perspective) and
G3 (To measure how easy to remember are the elements of a web API, from
the user’s perspective; both having a single Question) also have a sizable set
of metrics, which suggests that Efficiency and Memorability are also important
usability factors for web APIs. In contrast, G6, G4, and G5 (To measure how
satisfactory is to use a web API, from the user’s perspective; To measure how
many errors users of a web API make while using it; and To measure how many
internal errors a web API experiences while users use it respectively; again, each
with only one Question) have the least metrics, having G4 and G5 a single
metric, which were proposed by the authors of this article. This suggests either
that Errors, Robustness, and Satisfaction are not fundamental factors for web
API usability, or that they are difficult to measure (this might be because of a
variety of reasons).
In future investigations, we plan to (1) add weights to the metrics of the model,
based on the feedback obtained from the survey, (2) contact survey respondents
who agreed to be interviewed to gather additional information that might help
improve the model, and (3) further validate the model with a group of experts in
the field of web APIs. We also plan on developing a catalog of metrics organized
by web API component, as a valuable contribution for web API consumers and
developers.

References

1. De, B.: API Management. Apress, Berkeley, CA. (2017).
https://doi.org/10.1007/978-1-4842-1305-6

2. Raemaekers, S., van Deursen, A., Visser, J.: Measuring software li-
brary stability through historical version analysis. 2012 28th IEEE
International Conference on Software Maintenance (ICSM). (2012).
https://doi.org/10.1109/ICSM.2012.6405296

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 11

https://doi.org/10.1007/978-1-4842-1305-6
https://doi.org/10.1109/ICSM.2012.6405296


12 A. Machini, S. Casas

3. Tan, W., Fan, Y., Ghoneim, A., Hossain, M.A., Dustdar, S.: From the Service-
Oriented Architecture to the Web API Economy. IEEE Internet Computing. 20,
64–68. (2016). https://doi.org/10.1109/MIC.2016.74

4. Stylos, J., Myers, B.: Mapping the Space of API Design Decisions. IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC 2007).
(2007). https://doi.org/10.1109/VLHCC.2007.44

5. Nielsen, J.: The usability engineering life cycle. Computer. 25, 12–22. (1992).
https://doi.org/10.1109/2.121503

6. Mosqueira-Rey, E., Alonso-Ŕıos, D., Moret-Bonillo, V., Fernández-Varela, I.,
Álvarez-Estévez, D.: A systematic approach to API usability: Taxonomy-derived
criteria and a case study. Information and Software Technology. 97, 46–63. (2018).
https://doi.org/10.1016/j.infsof.2017.12.010

7. Basili, V. R., Caldiera, G., Rombach, H. D.: The Goal Question Metric approach.
Encyclopedia of software engineering, 528-532. (1994).

8. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science
Research Methodology for Information Systems Research. Journal of Manage-
ment Information Systems. 24, 45–77. (2007). https://doi.org/10.2753/MIS0742-
1222240302

9. Koçi, R., Franch, X., Jovanovic, P., Abello, A.: A Data-Driven Approach
to Measure the Usability of Web APIs. 2020 46th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA). (2020).
https://doi.org/10.1109/SEAA51224.2020.00021

10. Ma, S.-P., Lan, C.-W., Ho, C.-T., Ye, J.-H.: QoS-Aware Selection of Web APIs
Based on ϵ-Pareto Genetic Algorithm. 2016 International Computer Symposium
(ICS). (2016). https://doi.org/10.1109/ICS.2016.0122

11. Scheller, T., Kühn, E.: Automated measurement of API usability: The API
Concepts Framework. Information and Software Technology. 61, 145–162 (2015).
https://doi.org/10.1016/j.infsof.2015.01.009

12. de Souza, C.R., Bentolila, D.L.: Automatic evaluation of API usability using com-
plexity metrics and visualizations. 2009 31st International Conference on Soft-
ware Engineering - Companion Volume. (2009). https://doi.org/10.1109/ICSE-
COMPANION.2009.5071006

13. Rama, G.M., Kak, A.: Some structural measures of API usability. Software: Prac-
tice and Experience. 45, 75–110. (2013). https://doi.org/10.1002/spe.2215

14. Four Principles for Designing Effective APIs, https://www.mulesoft.com/
api-university/four-principles-designing-effective-apis.

15. Riggins, J.: Why API Developer Experience Matters More Than Ever, https://
nordicapis.com/why-api-developer-experience-matters-more-than-ever.

16. Levin, G.: Top 5 REST API Design Problems, https://blog.restcase.com/
top-5-rest-api-design-problems.

17. Au-Yeung, J., Donovan, R.: Best practices for REST API design, https://
stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design.

18. Hämäläinen, O.: API-First Design with Modern Tools, https://www.theseus.fi/
bitstream/handle/10024/226493/Hamalainen Oona.pdf.

19. Mulloy, B.: Web API Design. (2012).
20. Nielsen, J.: Usability 101: Introduction to Usability, https://www.nngroup.com/

articles/usability-101-introduction-to-usability.
21. Piccioni, M., Furia, C.A., Meyer, B.: An Empirical Study of API Usability. 2013

ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement. (2013). https://doi.org/10.1109/ESEM.2013.14

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 12

https://doi.org/10.1109/MIC.2016.74
https://doi.org/10.1109/VLHCC.2007.44
https://doi.org/10.1109/2.121503
https://doi.org/10.1016/j.infsof.2017.12.010
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1109/SEAA51224.2020.00021
https://doi.org/10.1109/ICS.2016.0122
https://doi.org/10.1016/j.infsof.2015.01.009
https://doi.org/10.1109/ICSE-COMPANION.2009.5071006
https://doi.org/10.1109/ICSE-COMPANION.2009.5071006
https://doi.org/10.1002/spe.2215
https://www.mulesoft.com/api-university/four-principles-designing-effective-apis
https://www.mulesoft.com/api-university/four-principles-designing-effective-apis
https://nordicapis.com/why-api-developer-experience-matters-more-than-ever
https://nordicapis.com/why-api-developer-experience-matters-more-than-ever
https://blog.restcase.com/top-5-rest-api-design-problems
https://blog.restcase.com/top-5-rest-api-design-problems
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design
https://www.theseus.fi/bitstream/handle/10024/226493/Hamalainen_Oona.pdf
https://www.theseus.fi/bitstream/handle/10024/226493/Hamalainen_Oona.pdf
https://www.nngroup.com/articles/usability-101-introduction-to-usability
https://www.nngroup.com/articles/usability-101-introduction-to-usability
https://doi.org/10.1109/ESEM.2013.14


A preliminary GQM model to evaluate web API usability 13

22. Cleven, A., Gubler, P., Hüner, K.M.: Design alternatives for the evaluation of
Design Science Research artifacts. Proceedings of the 4th International Conference
on Design Science Research in Information Systems and Technology - DESRIST
’09. (2009). https://doi.org/10.1145/1555619.1555645

23. Lee, A.S., Hubona, G.S.: A Scientific Basis for Rigor in Information Systems Re-
search. MIS Quarterly. 33, 237. (2009). https://doi.org/10.2307/20650291

24. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering. Springer Berlin, Heidelberg. (2012).
https://doi.org/10.1007/978-3-642-29044-2

ASSE, Simposio Argentino de Ingeniería de Software

Memorias de las 53 JAIIO - ASSE - ISSN: 2451-7496 - Página 13

https://doi.org/10.1145/1555619.1555645
https://doi.org/10.2307/20650291
https://doi.org/10.1007/978-3-642-29044-2

	A preliminary GQM model to evaluate web API usability

