Selección de algoritmos de preprocesamiento de datos del Hospital Delicia Concepción Masvernat (Concordia, provincia de Entre Ríos) que permita el desarrollo de un componente de software para predicción de enfermedades cardiológicas.

  • María Elizabeth Silva Layes Facultad de Ciencias de la Administración – Universidad Nacional de Entre Ríos
  • Marcelo Gabriel Benedetto Facultad de Ciencias de la Administración – Universidad Nacional de Entre Ríos
  • Duval Horacio Benítez Facultad de Ciencias de la Administración – Universidad Nacional de Entre Ríos
  • Elio Darío Costen Facultad de Ciencias de la Administración – Universidad Nacional de Entre Ríos
  • Joaquín Diez Facultad de Ciencias de la Administración – Universidad Nacional de Entre Ríos
  • Juan José Aguirre Facultad de Ciencias de la Administración – Universidad Nacional de Entre Ríos
  • Marcelo Alejandro Falappa Departamento de Ciencias e Ingeniería de la Computación - Universidad Nacional del Sur
  • Jesús Fabián Frola Facultad de Ciencias de la Administración – Universidad Nacional de Entre Ríos
Palabras clave: Herramientas de Preprocesamiento, Inteligencia Artificial, Machine Learning, Sistemas de Soporte a Decisiones Clínicas

Resumen

El sector sanitario, sin lugar a dudas es uno de los ámbitos en el que se administran grandes volúmenes de datos; principalmente en el área clínica.
Esto conduce a identificar una importante necesidad de encontrar maneras de
administrar, integrar, analizar e interpretar ese gran conjunto de datos; procurando identificar patrones de comportamiento que sean de utilidad en la
toma de decisiones médicas. El proyecto de investigación1 en el que se enmarca este artículo plantea como principal objetivo desarrollar un componente de software capaz de generar, con aprendizaje automatizado, un modelo con capacidades predictivas sobre enfermedades cardiológicas; que permita un mejor soporte a decisiones de diagnóstico clínico y un avance significativo en la medicina preventiva. Este artículo presenta una revisión exhaustiva de las herramientas de preprocesamiento de datos para analizar datos sanitarios masivos, en términos de la imputación de valores perdidos, detección de valores atípicos, reducción, escalado, transformación y partición de datos. Además, se proponen herramientas de ciencia de datos en el campo sanitario. Se ha presentado un análisis en profundidad para describir los pros y los contras de las herramientas existentes para abordar los desafíos prácticos. Los resultados obtenidos son útiles para el desarrollo de investigaciones basadas en predicción de enfermedades en el campo sanitario. 

Publicado
2022-12-20
Cómo citar
Silva Layes, M., Benedetto, M., Benítez, D., Costen, E., Diez, J., Aguirre, J., Falappa, M., & Frola, J. (2022). Selección de algoritmos de preprocesamiento de datos del Hospital Delicia Concepción Masvernat (Concordia, provincia de Entre Ríos) que permita el desarrollo de un componente de software para predicción de enfermedades cardiológicas. Memorias De Las JAIIO, 8(5), 84-101. Recuperado a partir de https://ojs.sadio.org.ar/index.php/JAIIO/article/view/375
Sección
CAIS - Congreso Argentino de Informática y Salud