Manipulación de Expresiones Faciales vía Espacio Latente de Red Generativa Antagónica (GAN)
Resumen
StyleGAN [1] destaca como la arquitectura de vanguardia en generación de rostros sintéticos altamente realistas. Su implementación proyecta una imagen en su espacio latente, el cual es posible de manipular por medio de curvas direccionales modificando rasgos de la imagen original. Sin embargo, su alta dimensionalidad provoca que la búsqueda manual de una direccionalidad que produzca un rasgo o gesto dado resulte impracticable. Este trabajo propone una arquitectura neuronal de tipo pseudo-autoencoder que manipula la proyección latente alternando la apariencia del rostro. Esto se realiza gracias a la codificación del gesto facial con los vectores de Action Units. Se consiguió una dinámica de expresiones que permite la transición de un gesto a otro sin necesidad de pasar por el neutral, mejorando la naturalidad de la dinámica gestual.