Modelo basado en aprendizaje de máquina para la predicción de textura de suelos
Resumen
En el ámbito de las ciencias del suelo, el análisis de textura del suelo es esencial, ya que proporciona información crucial sobre la composición y las propiedades físicas del mismo. Por ello, su estudio, cálculo e interpretación son fundamentales. Se propone un modelo basado en aprendizaje de máquina para predecir la textura del suelo, utilizando datos de área de píxeles de las partículas de arena, limo y arcilla obtenidos a través de imágenes digitales. Adicionalmente, datos de materia orgánica y conductividad eléctrica se integrarán al modelo como atributos. El conjunto de datos se organizará incluyendo variables objetivo como el porcentaje de arena, el porcentaje de limo y la clasificación de la textura del suelo, basada en el método de Bouyoucos, que sirve como referencia estándar de laboratorio. El desarrollo de este trabajo busca simplificar los tiempos operativos, reducir tamaño de muestra y lograr una determinación sencilla y no destructiva de la granulometría del suelo.